Crystal chemistry of the $\frac{2}{\pi}[M_2^{3+}\phi_2(TO_4)_2]$ sheet: structural principles and crystal structures of ruizite, macfallite and orientite

PAUL B. MOORE, JINCHUAN SHEN AND TAKAHARU ARAKI2

Department of the Geophysical Sciences The University of Chicago Chicago, Illinois 60637

Abstract

The crystal structures of ruizite, $Ca_2Mn_2^{3+}(OH)_2[Si_4O_{11}(OH)_2] \cdot 2H_2O$, monoclinic, a = 9.064, b = 6.171, $c = 11.976\text{\AA}$, $\beta = 91.38^\circ$, space group C2/m, Z = 2, R = 0.084 for 1546 independent F_0 ; macfallite, $Ca_2Mn_3^{3+}(OH)_3[SiO_4Si_2O_7]$, monoclinic, a = 10.235, b = 6.086, $c = 8.970\text{\AA}$, $\beta = 110.75^\circ$, space group $P2_1/m$, Z = 2, R = 0.184 for 2437 independent F_0 ; and orientite, $Ca_2Mn_2^{2+}Mn_2^{3+}(OH)_4[Si_3O_{10}]$, orthorhombic, a = 9.074, b = 19.130, $c = 6.121\text{\AA}$, space group Bbmm, Z = 4, R = 0.156 for 1238 independent F_0 , have been approximately determined. Structure disorder (domains, intergrowths) and/or solid solution probably affect these structures; and true single crystals of these and related compounds are very infrequently encountered.

Ruizite, macfallite, orientite, lawsonite, sursassite, ardennite, pumpellyite, santafeite and bermanite all are based on the same fundamental building block, a sheet $\frac{2}{3}[M_2^3 + \Box \phi_2(TO_4)_2]$, $\phi =$ anion not associated with a tetrahedron, $\Box =$ vacancy. This sheet is based on a layer of the spinel structure projected down [111] giving the $\frac{2}{3}[M_2^3 + \phi_2(TO_4)_2]$ sheet with maximal two-sided plane group symmetry $[p\overline{3}m1]$, as found in chloritoid. Ordered vacancies lead to the fundamental building block in this study with plane symmetry [c2lm].

Alternatively, the chain component of the fundamental building block (f.b.b.) is $\frac{1}{2}[M_2^{3+}(O_7)_6(\phi)_2]$ where ϕ usually is OH⁻. A variety of interchain tetrahedral polymers can occur and many explain the disorder in these structures.

Introduction

Although many of the mineral crystal structures are presently known, the principles behind them are rarely applied, and a holistic structural genealogy is woefully lacking. Much of the inability to evolve a structural genealogy stems from the difficulty of applying graphical enumeration to these problems, and the problem of choice: just which part of the structure should be emphasized? We choose to demonstrate that a fragment—in this case a two-sided slab—is common to several crystal structures of minerals, and may afford a unifying genealogy among these compounds. The list is by no means exhaustive: the compounds selected were those with reasonably refined crystal structure parameters. Briefly, the compounds occur in regimes of low to intermediate temperature, and low to high (cf. lawsonite) pressure.

Structural principle

The underlying principle is a two-sided plane, a section of the familiar arrangement of spinel, $Al_2(MgO_4)$, normal to [111]. In our model, the symbol M refers to cationic species in octahedral coordination (in this case Al^{3+}) and T refers to the cationic species in tetrahedral coordination (in this case Mg^{2+}). For spinel, a=8.1Å, this arrangement has $t_1=V_2\sqrt{2}$ a=5.7Å and $t_2=\sqrt{3}$ $t_1=9.9\text{Å}$. It is an orthogonal cell and has been extensively exploited for structures derived from spinel by selective site orderings. This arrangement is a sheet with composition $\frac{2}{8}[M_3O_2(TO_4)_2]$, maximal point symmetry $\{32lm\}$ with two-sided plane group $p\overline{3}2lm$. The nearest orthohexagonal monoclinic subgroup of this would have point symmetry $\{2lm\}$ and two-sided plane group c2lm.

Table 1 outlines the crystal chemical characters of these 6×9 Å sheet structures, called such because their axial translations approximate these integers. Of the ten representative structure types, only the structure of santafeite is unknown. It is inferred to belong to this group and an approximate formula is given. Earlier, we attempted to solve its structure but it appears to be twinned, in

¹ X-ray Laboratory, Graduate School, Wuhan College of Geology, Beijing, China.

² Department of the Geological Sciences, University of Illinois, Chicago, Illinois 60680.

Table 1. Crystal-chemical characters of the 6 x 9Å sheet structures*

Species	Z	Formula	<u>a</u> (Å)	<u>b</u> (Å)	<u>(Å)</u>	£	Space Group	را/را	Two-sided plane	Reference
M122(TO.)2										
Chlaritoid	4	Fe(11);A1(OK),[A1:0;(SIO,);]	9.52	5.47	16.19	101.57*	C2/c	1,740		1
Theoretical	•	[H ₁ 0 ₄ (TO ₄) ₂], spinel <u>a</u> 4 * 8.1 Å	t 1 • <u>5.73</u>	t, • /Jt, • 9.92			[Pial, C2/m]	1,732	pãal, c2∕m	
M,0,(10.),										
Lawsonite	4	Ca[Al ₂ (OH) ₂ (S1 ₁ O ₇)]-H ₂ O	5.80	8.83	13.20		Crocm	1,522	r2/a	2
Sursass ⁴ te	2	m(II);[A1;(0k);[S10,](S1;0;]]	8.70	5,79	9.78	168,87	P2 /m	1.503	p2/q	3
Ardennite	2	Hn(II)_Hg2(OH)2[A1_(OH)4(A10_)(S10_)2(S11014)]	8.71	5.81	18.52	***	Prices	1,499	p2/a	4
Purpellyite	4	Ca2Hg[A12(OH)2(S104){S1102}]	<u>8.81</u>	5.94	19.14	97.60	A2/m	1.483	#2/m	5
Orientite	4	Ca_10(H_10)_[Mn(111)_2(OH)_1(S1_0_1)]	9.07	19.13	6.12		RI	1,482	b2/=	6
Macfallite	2	Ca2[Mn(III);(OH);(SIO.)(SI2O;)]	10.23	6.09	8.97	110,75	P2,/m	1.473	p2/m	6
Ruizite	2	Ca ₂ [Mn(TfI) ₂ (OH) ₂ (Sf ₄ O ₁₁ (OH) ₂)]-2H ₂ O	9.0 <u>6</u>	6.17	11.98	91.38	C2/m	1,458	ç2/s	6
Santafeite	4	ca. Ha ₃ Ca(OH) ₂ [H _D [111] ₃ (OH) ₁ (YO ₄) ₃]·H ₂ O	9.25	6.33	30,00		C222: (pseudo ?)	1,461	c2	7
Bermanite	4	Mn(II)(H ₂ O) _* [Mn(III) ₂ (OH) ₂ (PO _*) ₂]	<u>6.22</u>	8.93	19,25		C222; (pseudo)	1.436	c2	8

Species are arranged according to decreasing to/t; ratio. Cell edges of the f-b-b- are underlined. The space groups of bernanite and possibly santafette are the belined groups. The two-sided plane refers to the f-b-b- in the structures.

¹Harrison and Brindley (1957). ²Rucanova and Stipetrova (1959). ³Helli

³Hellini and Herlino (1982). ⁴Donn

*Donnay and Allmann (1968),

⁵Gottardf (1965),

This study. Thus and Weber (1958), with \underline{b} and \underline{c} axes interchanged.

Kampf and Moore (1976), after transformation $\underline{a} = [101], \underline{b} = [10\bar{1}], \underline{c} = [010]$. Note $\underline{a}^ = 90.25^*$.

much the same fashion as bermanite. The actual space group of bermanite is $P2_1$, but twinning usually leads to the $C222_1$ space group (Kampf and Moore, 1976). Ruizite, formerly proposed as $P2_1/c$ by Williams and Duggan (1977), is C2/m for our crystal from Kuruman, South Africa. The "theoretical" structure, which is included in the $M_3\phi_2$ (TO₄)₂ (ϕ = arbitrary symbol for an anion) subgrouping, would be a slab of the spinel structure normal to the [111] direction. The space group $P\overline{3}m1$ for this two-sided plane includes the orthogonal component of C2/m as a subgroup. The sheet of cubic close-packing is the basis for the ratio $t_2/t_1 = \sqrt{3}/1 = 1.732$.

An outline of the $P\overline{3}m1$, $a_1 = 6\text{Å}$, arrangement is presented in Figure 1. This sheet consists of rows of populated octahedra alternating with rows of insular octahedra and the tetrahedra. Chloritoid actually possesses this slab as the [Al₃O₂(SiO₄)₂] unit and distortions lead to monoclinic or triclinic symmetry, but the t_2/t_1 ratio is close to $\sqrt{3}$. If rows of populated octahedra alternate with rows of octahedral voids and the tetrahedra, then the formula $M_2 \square \phi_2(TO_4)_2$ obtains, where \square is a vacancy. This arrangement is an ordered subgroup of $P\overline{3}m1$. Its maximal space group is C2/m. The most pronounced distortion in these structures arises from cation-cation repulsion effects across the shared edges and a subsequent diminution in the t_2/t_1 ratio. If a = 9Å and b = 6Å, then $t_2/t_1 = 1.50$, close to the average 1.482 for the nine structure types of $M_2 \square \phi_2(TO_4)_2$. The range is 1.545 to 1.428 for these compounds. No attempt was made to transform the cell criteria in Table 1. Rather, the 6×9 Å axes were underlined and the ratio was derived directly from knowledge of the structure and orientation of the octahedral chains. All the structures approximate the 6 × 9 module, and division or multiplication of these axial

repeats was not required. This adds some credence to the $M_2 \square \phi_2(TO_4)_2$ unit as a fundamental building block. The direction normal to this sheet is the basis of a variety of tetrahedral polymerizations, as we shall see.

Figure 2a is a construction of the idealized C2Im sheet showing the important symmetry operations. Note that all populated octahedra are based on the unit $M(O_T)_4(\phi)_2$, where ϕ are in *trans* arrangement with respect to the

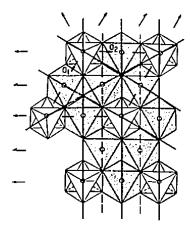


Fig. 1. Sheet of ${}_{a}^{2}[M_{3}\phi_{2}(TO_{4})_{2}]$ showing some of the symmetry elements in space group $P\overline{3}m1$ and the unit cell outline with a_{1} , $a_{2}\sim 6\overline{A}$. Some symmetry elements m, $\overline{1}$, 2, 2_{1} and axial glides are shown and are slightly offset to ease visualization of the sheet.

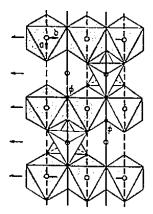


Fig. 2a. Sheet of $\frac{2}{\pi}[M_2 \Box \phi_2(TO_4)_2]$ showing m, $\overline{1}(1)$, $\overline{1}(2)$, 2. 2₁ and a-axial glides in space group C2lm, the ordered subgroup of $P\overline{3}ml$. This is the fundamental building block for the structures in the text. The axes are approximately $a = 9\text{\AA}$, $b = 6\text{\AA}$.

octahedral center. Monoclinic same-cell subgroups of this space group include

$$C2lm \rightarrow C2 \rightarrow P2, P2_1$$

$$Cm \rightarrow Pm$$

$$P2lm, P2_1lm$$

Often, it is more convenient to project the structure down the shortest axis, frequently an axis of symmetry. Representation of the sheet down this direction is featured in Figure 2b. Since the axis of projection is the 6Å direction, it coincides with the direction of octahedral edge-sharing chains. It corresponds to the [110] direction of the spinel structure.

The trans-M(O_T)₄(ϕ)₂ immediately presents a problem. Is cis-M(O_T)₄(ϕ)₂ possible? Figure 3 shows such an arrangement with a'=a/2, b'=b, maximal space group P2lm. Of the eight known structures in Table 1, all involve trans-M(O_T)₄(ϕ)₂ and the cis-M(O_T)₄(ϕ)₂ arrangement has yet to be found. It is believed that the pronounced Jahn-Teller axial distortion from the d_2 : molecu-

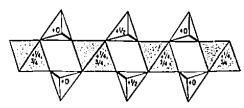


Fig. 2b. Alternative projection of ${}_{2}[M_{2}\Box\phi_{2}(TO_{4})_{2}]$, a frequent projection for the Fig. 5 series. The edge-sharing ${}_{2}^{L}M\phi O_{T_{3}}$ 6Å octahedral chains are normal to the paper. The 9Å direction runs from left to right and the intersheet portion runs from north to south. Heights are given as fractional coordinates of the 6Å direction.

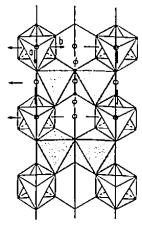


Fig. 3. The hypothetical structure built of $cis-M\phi_2O_{T_d}$ octahedra. The symmetry elements m, $\overline{1}$ are shown and the space group is P2/m. The axes are approximately a=4.5Å and b=6Å.

lar orbital for d^4Mn^{3+} in high spin configuration forces the trans arrangement, but this does not rule out the cis arrangement for some isotropic cation, say Al³⁺.

In every structure involving Mn^{3+} (orientite, macfallite, ruizite, bermanite), a common feature of polyhedral distortion appears: the polyhedron is elongate with $4Mn^{3+}$ –O ca. 1.93Å and $2Mn^{3+}$ –O ca. 2.21Å, with $^{16)}Mn^{3+}$ –O = 2.02Å average (Table 2). The major component of the elongate bonds is oriented parallel to the 6Å axis, the direction which is normal to the octahedral shared edges in the $\frac{1}{2}[Mn^{3+}\phi_4]$ octahedral chain. Isolating the sheet of octahedra and tetrahedra in Figure 2, three kinds of ligand arrangements occur. The first is (a) $2Mn^{3+}$ + $1Si^{4+}$ and is an O^{2-} ligand. The second is (b) $1Mn^{3+}$ + $1Si^{4+}$, also an O^{2-} ligand. The third is (c) $2Mn^{3+}$, corresponding to the hydroxyl (OH⁻) ligand. In each structure, the elongate Mn^{3+} –O bonds correspond to the ligand at (a). The combination of the elongate vertical elements of the elongate vertical elements of the elongate vertical elements.

Table 2. Meridional and apical Mn³⁺-O bonds for the fundamental building block in bermanite, orientite, ruizite and macfallite[†]

	Heridio	nal bonds	Aptcal bonds	Average
Bermanita Hn(1) Hn(2)	1.89 1.91 1.89 1.91	1.95 1.96 1.94 1.95	2.20 2.20 2.21 2.24	2.02 Å 2.02
Orientite Mn(1)	1.91 1.91	1.96 1.95	2.20 2.20	2.02
Ruizite Hn	1.91 1.91	1.95 1.95	2.20 2.20	2,02
Macfallite Mn(3)	1.94 1.94	1.94 1.94	2.22 2.22	2.03
Grand average	1.9	зX	2.21 Å	2.02 1
Range	1,89-1	.96 X	2.20-2.24 A	

Thm(1) in macfallite excluded because it contains significant aluminum. The bermanite data are from Kampf and Moore (1976). ces result in a t_2/t_1 ratio that is relatively small. Indeed, all five structure types with the $[Mm_2^{3+}(OH)_2(TO_4)_2]$ building block possess the smallest ratios among the compounds in Table 1.

The $[Mn_2^{3+}(OH)_2(TO_4)_2]$ fundamental building block (abbreviated f.b.b.) imprints other portions of the structure as well, even though linking units of varying dimensions occur between the sheets. The fundamental building block is a portion of a crystal structure which also is an invariant component of several non-equivalent crystal structures. In the structures of ruizite, orientite, macfallite, pumpellyite and ardennite larger cations such as Mn2+ and Ca2+ occur in seven-fold coordination by anions and the polyhedron corresponds to No. 23 with maximal point symmetry C2v (mm2) in Britton and Dunitz (1973). The polyhedron is reminiscent of the gable disphenoid of order 8 which occurs as the coordination polyhedron about Ca2+ and Na1+ in several structures (Moore, 1981). The gable disphenoid is constructed by rotating one square face 90° relative to the other of two equilateral trigonal prisms and fusing them together. Polyhedron No. 23 is obtained by fusing an equilateral trigonal prism and a square pyramid together at the square face, or can be simply called the monocapped trigonal prism. In every case, three vertices of a trigonal prismatic component link to vertices between successive octahedra in the 6Å chain. These vertices are of the type $a(\times 1)$ and $b(\times 2)$. The remaining four vertices exhibit a variety of coordinations since they are the regions away from the f.b.b. Other coordinating cations to these vertices can be Si4+, 2Si4+, As5+, M2+, M3+-or the vertices can be other ligands such as (OH-) and (H2O).

Lawsonite possesses the same f.b.b. and the interleaving Ca²⁺ has related but distinct coordination, being of

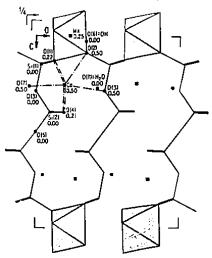


Fig. 5a. Representation of the ruizite structure down the [010] direction. Atoms labelled correspond to Table 5a.

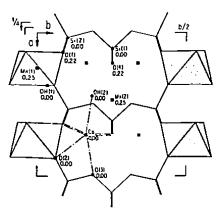


Fig. 5c. Representation of the disordered orientite structure down [001]. Note [Si₃O₁₀] groups and disordered Mn(2) are drawn in.

number 6. The coordination on the square pyramidal side is the same, but on the trigonal side the two oxygens are replaced by one, resulting in a distorted octahedron. The trigonal oxygens O(3) in Figure 4, which represents lawsonite, are present but their distances are too long for nearest neighbor coordination. Bermanite, which has intersheet $Mn^{2+}(H_2O)_4(Op)_2$, bridges the f.b.b.'s by the (Op) oxygens.

The $X\phi_7$ polyhedra commonly polymerize to each other through edge-sharing. In ruizite they are isolated, but they occur as edge dimers in ardennite and orientite, where Ca-O of the terminal square planar bonds are parallel, and in pumpellyite and macfallite where they are opposed. Portions of these structures are featured in the Figure 5 series.

The tetrahedral links between the f.b.b.'s are interesting. The bases of the tetrahedral segments such as O(1)–O(2)–O(1) in orientite (Fig. 6c) link to the f.b.b. of the same structure (Fig. 5c). The tetrahedral units are homologues of the linear sorosilicate series $[T_nO_{3n+1}]$, where n

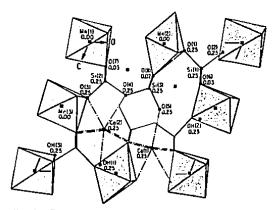


Fig. 5e. Representation of the macfallite structure down [010].

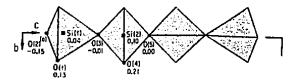


Fig. 6a. Tetrahedral interlayer link in ruizite down [100].

= 1, $\text{Si}\phi_4$; 2, $\text{Si}_2\phi_7$; 3, $\text{Si}_3\phi_{10}$; and 4, $\text{Si}_4\phi_{13}$. Representatives include bermanite and possibly santafeite (n = 1); lawsonite (n = 2); pumpellyite, macfallite, sursassite (n = 1,2); orientite (n = 3); ardennite (n = 1,3); ruizite (n = 4). In the Figure 6 series, the tetrahedral units were projected down the 9Å axis and their dispositions approximate the tetrahedral arrangement in the rocksalt structure down [100]. For example, the central tetrahedra in ruizite are viewed down the approximate 2-fold rotors implicit in the $\overline{4}$ symmetry; the entire $\text{Si}_4\phi_{13}$ unit (Fig. 6a) can be considered as the fusion of the [Si₂O₇] dimers in pumpellyite, sursassite and macfallite at the inversion center. This point of fusion forces a central Si-O-Si = 180° angle in ruizite.

The structures thus can be conceived as sheets of the ${}^2[M_2\Box\phi_2(TO_4)_2]$ fundamental building block with connected $(Ca,Mn^{2+})\phi_1$ polyhedra No. 23. In turn, these sheets are connected to symmetry-translated sheets by a variety of (silicate) polymers, including $(Mn^{2+}(H_2O)_4)$ in bermanite; $[Si_2O_7]$ in lawsonite; $[SiO_4] + [Si_2O_7]$ in sursassite, pumpellyite, macfallite; $[Si_3O_{10}]$ in orientite; $[AsO_4] + [SiO_4] + [Si_3O_{10}]$ in ardennite; and $[Si_4O_{11}(OH)_2]$ in ruizite. Naturally, portions of these polymers are also components of the fundamental building blocks. For example, ruizite could be rewritten $[Ca_2(H_2O)_2Si_2O_3(OH)_2][Mn_2^{3+}(OH)_2(SiO_4)_2]$ where the first brackets represent the material beyond the border of the fundamental building block denoted in the second brackets. With this spirit in mind, the formulae in Table 1

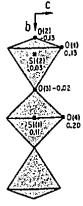


Fig. 6c. Tetrahedral interlayer link in orientite down [100]. Here, the connected [Si₃O₁₀] unit is shown.

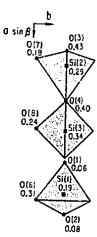


Fig. 6e. Tetrahedral interlayer link in macfallite down [001] showing $[Si_2O_7]$ and $[SiO_4]$ units.

have been rewritten in Table 3 to stress two critical regions: the intersheet material in the first bracket and the fundamental sheet or building block in the second bracket. To effect this, the structures in the Figures 5 and 6 series were inspected. The fundamental sheet was isolated and subtracted from the formula in Table 1. What remained was cross-checked on the structure drawings and defined as intersheet material. In only one structure, lawsonite, was partitioning between regions not exact since one extra oxygen had to be added. This was consequently subtracted from the intersheet material.

Some very interesting conclusions can be drawn from Table 3. First, sursassite and macfallite are chemically and structurally related as their recent structure determinations indicate (Mellini and Merlino, 1982; this study), the major difference being pronounced Jahn-Teller distortion in the latter compound. Second, mistakes in the intersheet region should be quite likely among compounds which have the same fundamental building blocks and similar metric relations in these building blocks such

Table 3. Partitioning of formulae in Table 1 into intersheet and fundamental building block*

Species	First bracket (Intersheet)	Second bracket (f.b.b.)
Lawsonite	Ca(H2O)(O)-1	AT=(0H)=(510x)z
Sursassite	ED12(HD) FA*EnH	A1.(OH)2(510.)2
Ardennite	Hni*Mg2(OH)25102A504	2A12(OH)2(S10.)2
Pumpellyite	Ca ₂ (H ₂ O)MgS{O ₃	AT = (OH) = (S10 L) =
Orientite	Ca2(H2O)35102	Hn1*(OH)=(S10.)=
MacFallite	Ca ₂ Hn ^{a+} (OH) S10 _a	Hn3*(0H)=(S10+)=
Ruizite	Caz(H2O)zS1zOz(OH)z	Hn]*(0H) ₂ (S10 ₆) ₃
Bermanite	7/12+(H ₂ O),	Mn1*(OH)=(PO+)=

TSintafette omitted because structure is not known. Orientite assumes the member without Hn²⁺. Note isocorphism between sursassite and macfallite. Lawsonite has negative oxygen in first bracket to balance charge.

as [Mn₂³ (OH)₂(SiO₄)₂] in orientite, macfallite and ruizite. We offer evidence here that the structures of the crystals used in our study probably represent a substantial degree of domain disorder, since despite structure solution and convergence, their final reliability factors were not of satisfactory quality.

Experimental

The experimental details of ruizite, macfallite and orientite are summarized in Table 4. Crystals of ruizite from the type locality at Christmas Mine, Gila County, Arizona, were kindly provided by Dr. Sidney A. Williams. Unfortunately, they were unsuitable for data collection because of twinning and very small crystal size. Shortly thereafter, Mr. John S. White, Jr., of the U.S. National Museum (Smithsonian Institution) kindly sent sharp brown prismatic crystals from the N'Chwaning Mine, Kuruman,

Cape Province, South Africa (USNM No. 136812), and these were used throughout the remainder of the study. Good agreement appears in the unit cell parameters compared with the original study by Williams and Duggan (1977), but we do not agree on the space group. Since $P2_1/c$ is not a same-cell subgroup of C2/m, caution must be exerted without additional study on the type material, since it is possible (though unlikely) that two closely related species are involved.

Macfallite and orientite samples both were collected by the senior author on the dumps of the type locality for the former mineral, near Lake Manganese. Copper Harbor, Keweenaw County, Michigan. Great effort was expended to obtain adequate crystals, since the minerals are usually twinned and occur with splayed surfaces. The crystals finally selected were deep maroon and transparent. The end-member formulae in Table 4 for these minerals lead to a calculated density higher than observed, due to the presence of Al³⁺ in these crystals (Moore et al., 1979). For

Table 4. Ruizite, macfallite and orientite: experimental details

p(calcd), g cm ⁻³ 2.89 3.53 3.48 Specific gravity* 2.9 3.43 3.33 p, cm ⁻¹ 31.7 50.9 50.1 (B) Intensity Measurements		(A) Crystal Cell Data		
b, Å 6.171(2) 6.086(6) 19.130(7) c, Å 11.976(3) 8.970(5) 6.121(5) β, deg 91.38(2) 110.75(3) - Space group C2/m P21/m Bbmm Z 2 2 2 4 formula Ca ₂ Mn ₂ Si ₃ O ₁₁ (OH) ₃ ·2H ₂ O Ca ₂ Mn ₃ Si ₃ O ₁₁ (OH) ₃ · Ca ₂ Mn ₃ Si ₃		Ruizite	HacFallite	Orientite
b, Å	a. A	9,064(1)	10,235(3)	9.074(4)
c, Å β, deg β1.38(2) β1.075(3) β, deg β1.38(2) β1.0.75(3) β, deg β1.38(2) β1.0.75(3) β. deg β1.38(2) β1.0.75(3) β1.0.75(b. A	6.171(2)	6.086(6)	
\$\text{group}\$ \$\text{Space group}\$ \$\text{C2/m}\$ \$\text{P21/m}\$ \$\text{Bbmm}\$ \$\text{Z}\$ \$\text{2} \text{2} \text{4}\$ \$\text{Formula}\$ \$\text{Ca_2\mu_2S1_00_1_(OH)_0.2H_2O}\$ \$\text{Ca_2\mu_3S1_00_1_(OH)}\$ \$\text{Ca_2\mu_2S1_00_1_(OH)_0.2H_2O}\$ \$\text{Ca_2\mu_3S1_00_1_(OH)}\$ \$\		11.976(3)	8.970(5)	6,121(5)
2 2 2 4 Formula		91.38(2)	110.75(3)	-
Formula	Space group	C2/m	P2 ₁ /m	Bbom
p(calcd), g cm ⁻¹ 2.89 3.53 3.48 Specific gravity* 2.9 3.43 3.33 μ, cm ⁻¹ 31.7 50.9 50.1 (B) Intensity Measurements (Crystal size, mm (lia, lib, lic) Max (sin θ)/λ Scan speed (deg per min) Eackground counts Radiation Independent F ₀ Diffractometer (C) Refinement of the Structure	Z Z	2	2	4
2.89 3.53 3.48	Formula	Ca2Hn2S1+011(0H)+-2H20	Ca ₂ Hn ₃ Si ₃ O ₁₁ (OH) ₃	Ca ₂ Mn ₃ S1 ₃ O ₁₀ (OH),
(B) Intensity Measurements Crystal size, mm (11a, 11b, 11c) (p(calcd), g cm ⁻¹	2.89	3.53	
μ, cm ⁻¹ (B) Intensity Measurements Crystal size, mm (Iia, Iib, Iic) Nax (sin θ)/λ Scan speed (deg per min) Eackground counts Radiation Independent F ₀ Independent F ₀ Of Refinement of the Structure (C) Refinement of the Structure R = ΣΙΙΕ ₀ !- Ε _c !1/ΣΙΕ ₀ R _H = (Σ _H (F ₀ - F _c ² /Σ _H F ₀ ²) ³ , ω=σ ⁻² (F ₀) Of Refinement of the Structure Of Refinement of the Structure Of Refinement of the Structure	Specific gravity*	2.9	3,43	3.33
Crystal size, mm (iia, lib, lic) 0.30, 0.15, 0.12 0.15, 0.30, 0.10 0.12, 0.15, 0.16 (iia, lib, lic) 0.72 0.70 0.70 Scan speed (deg per min) 2.0 2.0 2.0 2.0 Sackground counts		31.7	50.9	50.1
(C) Refinement of the Structure R = ΣΙΙΓο!- F _C 11/ΣιΓ _O 1	Crystal size, ππ	0.30, 0.15, 0.12	0.15, 0.30, 0.10	0.12, 0.15, 0.12
2.0 2.0 2.0 2.0 2.0 2.0 3.0	· ·	•	• •	• •
Sackground counts			· ·	= : =
Radiation	- · · · · · · · · · · · · · · · · · · ·		==	
1546 2437 1238	-			
Diffractometer		— — — — — — — — — — — — — — — — — — —		
(C) Refinement of the Structure $R = \sum F_0 ^2 - F_0 /\sum F_0 \qquad 0.084 \qquad 0.184 \qquad 0.156$ $R_{\omega} = \left(\sum_{\mu} (F_0 - F_0)^2 / \sum_{\mu} F_0 ^2\right)^{\frac{1}{2}}, \ \omega = \sigma^{-2}(F_0) \qquad 0.095 \qquad 0.140 \qquad 0.143$		·-	=	
$R_{\rm H} = \left(\Sigma_{\rm H}(1F_0)^{-1}F_0\right)^{\frac{1}{2}}/E_{\rm H}F_0^{\frac{1}{2}})^{\frac{1}{2}}, \ \omega = \sigma^{-2}(F_0) \qquad 0.095 \qquad 0.140 \qquad 0.143$		(C) Refinement of the Struc	ture	
$R_{\rm H} = (E_{\rm H}(1F_0) - 1F_0)^2 / E_{\rm H} F_0^2)^{\frac{1}{2}}, \ \omega = \sigma^{-2}(F_0) \qquad 0.095 \qquad 0.140 \qquad 0.143$			o 104	A 174
		·	·*	
Scale factor (.441(6) 4.3/\3/ (.14(1)		- 7-		
Yariable parameters 72 123 69	= = : :		•	

Table 5a. Ruizite atomic coordinates'

Atom	Ε	x	У	Z
Hr. Ca	4	0.2500 0.2054(2)	0.2500 0.5000	0.0000 0.2599(1)
Si(1) 0(1) 0(2) 0(3)	4 8 4 4	0.0355(2) 0.1328(4) 0.3748(6) -0.0063(6)	0.0000 0.2165(6) 0.5000 0.0000	0.1513(2) 0.1291(3) 0.0921(5) 0.2057(4)
S1(2) 0(4) 0(5)	4 8 2	0.1042(2) 0.2056(8) 0.0000	0.0000 0.2150(9) 0.0000	0.3951(2) 0.3954(5) 0.5000
0(6)	4	0.3674(6)	0.0000	0.0459(5)
0(7)	4	0.4437(8)	0.0000	0.2781(7)

†Estimated standard errors refer to the last digit. E in the Table 5 series is equipoint rank. Note 0(4) = 0½ + 00½, 0(6) = 00° and 0(7) = 1½0.

all three compounds, a set of single crystal photographs was taken, and each spot was inspected with a loupe for evidence of twinning, intergrowth, etc. When the crystals were deemed satisfactory, they were transferred to the Picker FACS-I automated diffractometer. The data on macfallite and orientite were collected much earlier and processed on the AMDAHL facility at The University of Chicago. Ruizite, a more recent study, was processed on the DEC VAX 11/780 computer facility. Scattering curves for Ca²⁺, Mn³⁺, Si⁴⁺ and O¹⁺ were obtained from Ibers and Hamilton (1974). Anomalous dispersion corrections were obtained from Cromer and Mann (1968) for the heavier elements. Absorption correction involved careful measurement of the crystal shape. The Gaussian integral method (Burnham, 1966) was applied to macfallite and orientite, and the AGNOST program on the VAX facility was utilized for ruizite.

The individual crystal structures were solved by classical Patterson P(uvw) synthesis. Since the structures were largely unknown at the time, some difficulty was encountered in each

Table 5b. Macfallite atomic coordinates[†]

_	Atom	E	x	У	Z	Beq, A ²	
	Mn(1)* Mn(2) Mn(3)	2 2 2	0.0000 0.5000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.5000	1.80(6) 2.36(4) 2.29(4)	
	Ca(1) Ca(2)	2	0.6817(4) 0.3128(4)	0.2500 0.2500	0.7954(5) 0.6687(5)	2.85(6) 2.93(6)	
	\$1(1) 0(1) 0(2) 0(6)	2 2 2 4	0.8107(5) 0.6519(13) 0.9045(15) 0.8387(9)	0.2500 0.2500 0.2500 0.2500 0.0332(14)	0.1905(6) 0.0560(15) 0.0778(16) 0.3060(10)	1.79(7) 1.98(18) 2.63(22) 2.25(13)	
	\$1(2) 0(3) 0(4) 0(7)	2 2 2 4	0.1956(5) 0.1234(14) 0.3648(13) 0.1635(9)	0.2500 0.2500 0.2500 0.2500 0.0285(14)	0.2929(6) 0.4279(14) 0.3986(14) 0.1858(10)	1.76(7) 2.17(18) 2.10(17) 2.21(13)	
	\$1(3) 0(5) 0(8)	2 2 4	0.5029(5) 0.6394(13) 0.5010(9)	0.2500 0.2500 0.0219(13)	0.3377(6) 0.5173(15) 0.2426(10)	1.82(7) 1.99(17) 2.09(11)	
	OH(1) OH(2) OH(3)	2 2 2	0.3795(15) 0.9324(14) 0.0649(16)	0.2500 0.2500 0.2500	0.9394(15) 0.5860(15) 0.9036(16)	2,20(20) 2,16(18) 2,56(22)	

Estimated standard errors refer to the last digit.

*Reffned to 0.61(2) Hn ** + 0.39 A1 ** occupancy.

Table 5c. Orientite atomic coordinates*

Aton	E	х	у	Z
Mn(1)	\$×8=4	0.2500	0.0000	0.2500
Mn(2)		0.4549(8)	0.2500	0.2499(11)
Ca		0.6978(1)	0.1585(1)	0.0000
\$1(1)	4 × 4 = 2	0.1057(8)	0,2500	0.0000
0(3)	8	0.9833(12)	0,1808(4)	0.0000
0(4)	8	0.2049(11)	0,2500	0.2245(15)
51(2)	8	0.0301(4)	0.0970(2)	0.0000
n(1)	16	0.1294(7)	0.0812(3)	0.2164(9)
0(2)	8	0.8729(11)	0.0584(4)	0.0000
0(5)	8	0.3677(10)	0.0308(4)	0.0000
0(6)	8	0.4325(16)	0.1766(6)	0.0000

case, in retrospect because of the dominant sheet motif $\frac{2[Mn]^2}{(OH)_2(SiO_4)_2}$. Convergence of the crystal structures is reported in Table 4, part C, where $R = \sum ||F_0| - |F_0|/\sum ||F_0|$. Although macfallite and orientite were refined much earlier, their disappointingly high R-indices militated against any urgent communication of the results. However, no spurious or missing atomic positions could be located, and this problem was attributed to crystals which probably are not in fact composed on one domain, but are at least two. We are encouarged in this assessment by a recent communication on the related mineral sursassite by Mellini and Merlino (1982).

Final structure information is arranged sequentially, according to ruizite (a), macfallite (b), and orientite (c). Table 5 includes atomic coordinate parameters, Table 6 the thermal vibration parameters, Table 7 the bond distances and angles, and Table 8

Table 7a. Ruizite: bond distances and anglest

Pa				\$1(1)		
2 Mn-0(1)	1.909 \$		15	f(1)-0(2a)	1,604	
2 -0(6)	1.945		2	-0(1)	1.626	
2 -0(2)	7.195		1	-0(3)	1.652	
Average	2.017		446	rage	1,630	
		angle (deg.)				
2 0(2)-0(6)(14)	2.72	81.7	1.0	(2) ⁽⁼⁾ -0(3)		
2 0(1)-0(6)	2.72	89.8		(1)-D(3)	2.53	101.6
2 0(1)-0(6)(14)	2.73	90.2		(1)-0(1)(2)	2,65	107.2
2 0(1)-0(2)	2.85	87.6	2.00	1)-0(2)(4)	2,67	110.6
2 0(1)-0(2)(14)	2.03		2 01	17-0(2)	2.72	114.7
2 0(2)-0(6)	3.13	92.3 98.2	Aver	298	2.66	109.4
average	2.85	90.0		51(2)		
•			1 51	(2)-0(5)	1.590	
Ca Ca			2	-0(4)	1.614	
1 Ca-O(7)(A)	2.356		1	-0(3)	1,630	
2 -0(4)	2.393		aver	100		
2 -0(1)	2.428		4001	190	1.612	
1 -0(2)	2.558					
1 -0(3)(*)	2.624		1 0(3)-0(5)	2.57	105.7
average	2,459		2 0(4	4)-0(5)	2.63	110.3
	<33			4)-0(4)(2)	2,65	110,6
				1)-0(4)	2.66	109,9
			avera	ı g ë	2.63	109.5

Testimated standard errors are within 0.01 Å for 0-0"; 0.006 Å for Ca-0 and Si-0; and 0.005 Å for No-0; 0.3° for angles. The equivalent positions (referred to Table 5a) are designated as superscripts and are (a) = $\frac{1}{2}$ 0; $\frac{1}{2}$ = $\frac{1}{2}$, -7; (2) = $\frac{1}{2}$, - $\frac{1}{2}$, - $\frac{1}{2}$ -

Table 7b. Macfallite: bond distances and angles'

	Mn(1)	1			Pn(2))			Hn (3))	
2 H 2 2	5(1)-0(7) -0H(3) -0(2)	1.91 Å 1.98 2.06		2 1 2 2	ቴክ(2)-ዐዘ(1) -ዐ(1) -ዐ(8)	1.91 2.11 2,18		? Mr 2 2	-0(6) -0(3)	1.94 1.94 2.21	
ave	rage	1.97		đy	rage	2.07		āver		2,03	
			angle (deg.)								
•2 0	(2)-0H(3)	2.64	81.5	*2.0	P(1)-0H(1)	2.61	8D.B	2.0/	6)-0H(2)	2.69	88.0
2 0	(7)-OH(3)	2.73	89.2	2.0	(8)-OH(1) ⁽¹⁾	2.88	89.4		3)-OH(2)	2.79	84.1
2 0	(7)-OH(3) ⁽¹⁾	2.77	90.B		(8)-0H(1)	2.91	90.6		6)-OH(2)(1)	2.79	92.0
2 0	(2)-0(7)(1)	2.79	89.3		(1)-0(8)	2.99	88.5	2.0(3)-0(6) ⁽¹⁾	2.86	86.6
2 0	(2)-0(7)	2.82	90.7	2.0	(1)-OH(1) ⁽¹⁾	3.06	99.2		3)-0(6)	3,03	93.4
2 0	(S)-OH(3)(1)	3.06	98.5	2.0	(1)-0(8) ⁽¹⁾	3.07	91.4		3)-0H(2) ^(:)	3.09	95.9
ā vē:	rage	2.80	90.0		rage	2.92	90.0	àver:		2.88	90.0
	51(1)				\$1(2)				\$1(3)		
1 Sf	(1)-0(2)	1,62		2 5	1(2)-0(7)	1.62		2 51	(3)-o(e)	1.63	
2	-0(6)	1.64		1	-0(3)	1.63		1	-0(5)	1.66	
1	-0(1)	1.65		1	-0(4)	1.65		1	-0(4)	1.69	
aver	ege.	1.64		ā ve:	rage	1.63		àvera	i ge	1.65	
1 0	1)-0(2)	2.52	101.1	3.00	(3)-0(4)	2.58	103.5	1.044)-0(5)	2,63	103.5
1 01	6)-0(6)(2)	2.64	107.2		(3)-U(4) (4)-O(7)	2.63	105.9)-U(5) }-U(8)	2,68	109.3
	2)-0(6)	2.71	112.6	1 01	(*)-0(7) (7)-0(7) ^(*)	2.70	112,7)-0(8)	2.69	103,3
	1)-0(6)	2.72	111.7		(7)-0(7) (3)-0(7)	2.71	113.0	1 0/8)-0(8)(2)	2.78	117.3
aver	age	2.67	109.5	āver		2.66	109.3	avera		2.69	109.3
	Ca(1)				Ca(2)						
2 (-	(1)-0(7)(1)	2.29		, .		2 20					
2 Ca	-0(8)(1)	2.43			(2)-08(1)	2.28					
1	-0(0)	2.45		1	-0(3) -0(6) ⁽²⁾	2,34					
i	-0(1)	2,45		2	-0(6) ⁽¹⁾	2.38					
j	-0(3)	2.74		2 1		2.43 2.66					
•	-u(e)	J		•	-0(4)	2.00					

†Estimated standard errors are within 0.04 Å for 0-0° and Ca-0; 0.03 Å for Mn-0 and Si-0; 0.9° for angles. The equivalent positions (referred to Table 5b) are designated as superscripts and are (1) = -x, -y, -z; (2) = x, \(\frac{1}{2}\), -x, $\(\frac{1}{2}\), <math>-x$, $\(\frac{1}{2}\)$ = -x, $\(\frac{1}{2}\)$ - x, $\frac{1}{2}\)$ - x, $\(\frac{1}{2}\)$ - x, $\frac{1}{2}\)$ - x, $\frac{1}\)$ - x, $\frac{1}\)$ - x, $\frac{1}\)$ - x, $\frac{1}\)$ - x, $\frac{1}\)$

the structure factors.³ It should be noted that the anisotropic thermal parameters for these crystals are more likely manifestations of intergrowths and domain disorder, rather than descriptions of true thermal motions.

Discussion of the structures

All three structures—ruizite, macfallite, and orientite—are based on the $[Mn_2^{3+}(OH)_2(SiO_4)_2]$ fundamental build-

ing block. They differ in the nature of the intersheet material. The bond distance averages for Mn^{3+} —O in the f.b.b. are Mn—O = 2.02 for ruizite, Mn(1)—0 = 1.97 and Mn(3)—O = 2.03 for macfallite and Mn(1)—O = 2.02Å for orientite. The Mn(1)—O distance in macfallite is unusually short, but this is evidently the site where substantial Al^{3+} is sequestered according to Table 5b. The intersheet larger cations are particularly interesting. The Ca—O averages for seven coordination are Ca—O = 2.46 in ruizite, Ca(1)—O = 2.44 and Ca(2)—O = 2.41Å in macfallite, and Ca—O = 2.45Å in orientite. There is no evidence of significant substitution at the Ca sites in these structures. The Ca—O ranges are from about 2.3 to 2.7Å, and

[&]quot;Mn1"-Hs3" shared edges.

³ To obtain copies of Tables 6a, 6b, 6c, 8, and Figures 4, 5b, 5d, 6b, 6d and 6f, order Document AM-85-261 from the Business Office, Mineralogical Society of America, 2000 Florida Avenue, N.W., Washington, D. C. 20009. Please remit \$5.00 in advance for the microfiche.

Table 7c. Orientite: bond distances and angles*

Hn(1)			Hn(2)		\$1(2)		
2 Hn(1)-0(1)	1.91 Å		2 Ma	(2)-0(3)(*)	2.04	1 S1(2)-0(2)	1,61	
2 -OH(1)	1.96		2	-OH(2)	2.59	2 -0(1)	1.63	
2 -0(2) ^(e)	2.20		1	-0(4)	2.27	7 -0(3)	1.66	
average	2.02		1	-0(4) ⁽²⁸⁾	2.27	average	1.63	
			aver	åge .	2,13		1.03	
		angle (deg.)						
2 0H(1)-0(1)	2.71	89.3	**1 0(:	3)(n) ₊₀₍₃₎ (**)	2.65	1 0(2)-0(3)	2.55	102.6
2 OH(1)-0(1) ⁽¹⁴⁾	2.76	91.0	2 0(3) ^(a) -0(4) ^(/a)	2.77	1 0(1)-0(1)(2)	2.55	102.5
*2 OH(I)-D(2)(1)	2.77	83.4	1 08	(2)-OH(2) ⁽⁺⁾	2.81	2 0(1)-0(3)	2.67	108.7
2 0(1)-0(2)(=)	2.84	87.3	2 0(4)-OH(2)	2.85	2 0(1)-0(2)	2.71	113.9
2 0(1)-0(2)(1)	2.98	92.7	2 0(3) ^(a) -91(2)	3.10	average	2.66	109.4
2 OH(1)-0(2)(a)	3.11	96.6	2 0(3)) ⁽⁼⁾ -0(4)	3.31		2.00	10224
average	2.86	90.0	2 0(4)(14)-OH(2)	3.31	1 5150 - 10		
•			avera	ye	3.01	1 51(1)-Mn(2) ^(a) 1 Ca-Si(2)	2.05 3.24	
(1)12				Ca				
2 \$1(1)-0(4)	1.64		2 Ca-	0(1)(a)	2.36			
2 -0(3)	1.73		2 -	D(4)(=)	2.43			
äveräge	1.68			OH(2)	2.43			
	,,50			0(2)	2.49			
				0(3)	2,62			
**1 0(3)-0(3)(*)	2.65	100,0	averag	•	2.45			
1 0(4)-0(4)(2)	2.75	113.5	u rera	lc.				
4 0(3)-0(4)	2.77	110,7						
	2.75	109.4						

†Estimated standard errors are within 0.04 Å for 0-0° and Ca-0; 0.03 Å for \aleph_2 -0 and \aleph_3 -0; 0.9° for angles. The equivalent positions (referred to Table 5c) are designated as superscripts and are (a) = \aleph_3 0 \aleph_3 : (1) = -x, -y, -z; (2) = x, y, -z; (3) = x, y, y, z; (4) = x, y, y, z.

Mn^{2}-Mn^{2*} shared edges. **Mn^{2*}-51** shared edges (disorder).

the ${\rm Ca}\phi_7$ polyhedron No. 23 appears to be a characteristic feature in this family of structures.

Macfallite and orientite possess additional interlayer Mn(2) in their structures. Their respective averages are Mn(2)-O = 2.07 and 2.13Å. Both compounds are interpreted as possessing a (Mn^{2+}, Mn^{3+}) solid solution at this site, but additional Mg^{2+} may also play a major role as, for example, in ardennite, which relates to orientite; and sursassite, which is nearly isostructural with macfallite. This implies that a complex coupled relationship may exist between O^{2-} , OH^- and possibly H_2O arising, some of the coordinating anions about Mn(2).

In orientite, the Mn(2) site is evidently half-segmed since the Mn(2)-Si(1) = 2.05Å distance is unusually short. This would suggest that an average of two ordering schemes is being observed. In the first scheme, consider the absence of Mn(2). Then the orientite structure formula would be $Ca_2Mn_2^{3+}(OH)_2(Si_3O_{10})$. Here, OH(2) is also eliminated, which would reduce the coordination about

Ca to six. In the second scheme Mn(2) is fully occupied but Si(1) is empty. A charge-balanced example would be $Ca_2Mn^{2+}(OH)_2[Mn_2^{3+}(OH)_2(SiO_4)_2]$. Orientite would represent compositions somewhere along the join between these two end-member compositions. Moore et al. (1979) suggested $Ca_2Mn^{2+}Mn_2^{3+}(OH)_4(Si_3O_{10})-Ca_2Mn_2^{3+}(OH)_2(Si_3O_{10}) \cdot 2H_2O$ for the series at a time when the structure was not known. Interestingly, Mellini and Merlino (1982) proposed a model where [SiO_4] tetrahedra alternate with [Si_3O_{10}] tetrahedra across the fundamental building block and this would appear to be the best compromise between the two extremes.

This hypothesis appears to bring several observations into account. The first is the presence of [Si₄O₁₁(OH)₂] tetramers in ruizite, where on the average two out of four equivalent oxygens are replaced by hydroxyl groups to balance charge. In orientite, two out of four equivalent oxygens likewise appear to be replaced by hydroxyls. The second problem concerns the formula unit contents

Table 9. Orientite and ruizite: electrostatic valence balance of cations and anions*

				ORIEN	TITE			
			Co	prdication	g cation	\$		
	Anions	Ca	Ha(1)	Mn(2)	\$1(1)	51(2)	Po	Conclusion
	0(1)	3	ì			ť	1,79	02-
	0(2)	4	1 - 1			1	2,29	03
A	0(3)	5			*	*	2.29	02-
	*0(4)	3, . 4,			*		1.57	02-
	0(5)		1 . 2				1.00	0H^
	0(6)	5					0.29	H ₂ O
	0(1)	4	ŧ			t	1,79	02-
	0(2)	3,	4 - 4			1	2.29	03-
В	0(3)	2,		8 + 8		ń	1,62	02-
	*0(4)	4 - 3		4 . 4			0.91	OH-
	0(5)		1 . 1				1.00	OH.
	0(6)	3,		* * *			0.62	H ₂ O

- A. Composition $Ca_2\square(H_2O)_2\{H_2\}^*(OH)_2[Si_1O_{11}]\}, O(4) = 0^{1-}$
- B. Composition $Ca_2Mn^{2+}(H_2O)_2\{Mn]^*(OH)_2[(510_a)_2(OH)_2]\}$. $O(4) = OH^-$

RUTZITE Coordinating cations Conclusion Anions 51(2) 0(1) 1.79 0(2) 0(3) 2.29 *0(4) 1.29 0(5) 2,00 0(6) 1.00 0(7) 0,29 Composition Ca2(H2D)2[H2]*(OH)2[S1.0;1(OH)2]]. 0(4) = 0HLOL

Entries include Pauling bond strengths obtained by dividing formal charge by coordination number (C-N- for Ca = 7, Mn* 6, Mn* 6, St* 4). Since hydrogen ators were not determined in the structures, "conclusion" was guided by bond strength sum as bond distance deviations were not listed.

of orientite. Earlier studies met with problems accommodating the high water content proposed in chemical analyses. Finally, the hypothesis of Mellini and Merlino (1982) on the proposed structure for orientite and its relation to ardennite is substantiated, bearing in mind that

a single crystal of orientite end-member has yet to be investigated.

Since hydrogen atoms could not be located in this study, we have selected ruizite and orientite, the latter with and without Mn(2), to construct Table 9. From these electrostatic balance calculations, crude suggestions can be made on which oxygens are hydroxylated. In both instances, these involve O(4) which plays a similar role in both structures. It is an apical or terminal silicate oxygen which also bonds to 2Ca + 2Mn(2) or 2Ca + 1Si(1) for orientite, depending on the absence or presence of bonded silicon. In the former case, we elect O(4) = OH⁻, in the latter O(4) = O^{2-} . For ruizite, O(4) bonds to 1Ca + 1Si(2) and we have chosen O(4) = $\frac{1}{2}OH^{-} + \frac{1}{2}OH^{-} + \frac{1}{2}OH^{-}$ to balance charge.

A twin model was employed to explain the frequent appearance of bermanite crystals that satisfy X-ray extinctions compatible with space group C2221. Kampf and Moore (1976) refined this structure in space group P21 on an untwinned crystal recovered only with considerable difficulty. Does orientite enjoy the same kind of relationship? Although there are many subgroups of Bhum, Pnnim, the space group found for ardennite by Donnay and Allmann (1968), is one of them. We have constructed a model for space group Pnmm based on the Bbmm orientation, which admits both Mn(2) and Si(1) in the structure without steric hindrance in Figure 7. It features both $[Si(2)Si(1)Si(2)\phi_{10}]$ clusters and $[Si(2)Mn(2)Si(2)\phi_{10}]$ clusters. The cell contents for the two domains could be $4Ca_2\square(H_2O)_2\{Mn_2^{2+}(OH)_2[Si_3O_{10}]\}$ with $O(4) = O^{2-}$ and $4Ca_2Mn^{2+}(H_2O)_2\{Mn_2^{3+}(OH)_2[(SiO_4)_2(OH)_2]\}$ with O(4) =OH7 respectively. From this evidence, we suspect our crystal is an intergrowth of both domains and it is not known if pure single-domain crystals exist. Therefore, the Bbmm space group for orientite is probably an averaged model. Finally, a related cell formula can be written for ruizite. It is $2Ca_2(H_2O)_2\{Mn_2^{3+}(OH)_2 [Si_4O_{11} (OH)_2]\}$ with O(4) = $OH_{1/2}^{-} + O_{1/2}^{2-}$. The O(5) position at (0.0 ½) in ruizite possesses a U22 parameter which is about one

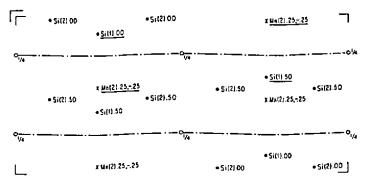


Fig. 7. The Si(1), Si(2) and Mn(2) atoms in orientite projected down the c-axis of the unit cell. The Si positions are denoted by dots and Mn by crosses. A possible site population scheme which is sterically permissible is underlined and involves Si(1) and Mn(2). The subgroup which obtains is *Pnmm*, some of whose symmetry elements are shown.

order of magnitude larger than for the other oxygens, again suggesting disorder.

In all these structures, the fundamental building block [Mn2*D(OH)2(TO4)2] does not seem to be disturbed, but the difficulties arise in the interlayer material. Therefore, we suspect that the concept of the fundamental building block is a key to relating these structures and that problems of domain structure, twinning and disorder of anionic units occur within the interlayer region. Of all three structure types, not one refined as anticipated for such compounds of intermediate atomic number and we suspect each of them involves some degree of disorder.

Acknowledgments

Measrs. Russell P. MacFall and Carlton W. Gutman were especially helpful in rounding up more specimens from the dumps of the Lake Manganese area. P.B.M. acknowledges support from NSF grant EAR81-21193 and J.S. appreciates support from the Ministry of Education, People's Republic of China.

References

- Allmann, R. and Donnay, G. (1973) The crystal structure of julgoldite. Mineralogical Magazine, 39, 271-281.
- Britton, D. and Dunitz, J. D. (1973) A complete catalogue of polyhedra with eight or fewer vertices. Acta Crystallographica, A29, 362-371.
- Burnham, C. W. (1966) Computation of absorption corrections, and the significance of the end effect. American Mineralogist, 51, 159-167.
- Cromer, D. T. and Mann, J. B. (1968) X-ray scattering factors computed from numerical Hartree-Fock wave-functions. Acta Crystallographica, A24, 321-324.
- Donnay, G. and Allmann, R. (1968) Si₃O₁₀ groups in the crystal structure of ardennite. Acta Crystallographica, B24, 845-855.

- Galli, E. and Alberti, A. (1969) On the crystal structure of pumpellyite. Acta Crystallographica, B25, 2276-2281.
- Gottardi, G. (1965) Die Kristallstruktur von Pumpellyit. Tschermaks Mineralogische und Petrographische Mitteilungen. 10. 115-119.
- Harrison, F. W. and Brindley, G. W. (1957) The crystal structure of chloritoid. Acta Crystaltographica. 10, 77-82.
- Ibers, J. A. and Hamilton, W. C. (1974) International Tables for X-ray Crystallography, 4. The Kynoch Press, Birmingham, England, 99-100.
- Kampf, A. R. and Moore, P. B. (1976) The crystal structure of bermanite, a hydrated manganese phosphate. American Mineralogist, 61, 1241-1248.
- Mellini, M. and Merlino, S. (1982) Order-disorder in sursassite. Abstracts of Papers, 13th General Meeting, 1MA '82 (Varna, Bulgaria), p. 373.
- Moore, P. B. (1981) Complex crystal structures related to glaserite, K₃Na(SO₄)₂: evidence for very dense packings among oxysalts, Bulletin de la Société française de Minéralogie et de Cristallographie, 104, 536-547.
- Moore, P. B. Ito, J. and Steele, I. M. (1979) MacFallite and orientite: calcium manganese (III) silicates from upper Michigan. Mineralogical Magazine, 43, 325-331.
- Rumanova, I. M. and Skipetrova, T. I. (1959) The crystal structure of lawsonite. Doklady Akademia Nauk S.S.S.R., 124, 324-327.
- Sun, M.-S. and Weber, R. H. (1958) Santafeite, a new hydrated vanadate from New Mexico. American Mineralogist, 43, 677-687.
- Williams, S. A. and Duggan, M. (1977) Ruizite, a new silicate mineral from Christmas, Arizona. Mineralogical Magazine, 41, 429-432.

Manuscript received, May 12, 1983; accepted for publication, August 22, 1984.

Table 8. Mac Fallite structure fortons Moone and Stein (Briffe)

	FC																																			
	FO																																			
	_																																			
	¥																																			
-	I																																			
	FC	23.9	13.2	20.5	12.6	41.6	2.8	2.5	16.4	0.0	1.5		6	6.1	5.0	19.2	30.3	8.0		1.2	20.9	18.6	14.5	*	E E		13.7	2.2	10.0	12.4	15.1	4.1	19.1	20.3	0 m) (
PART	6	21.6	11.6	18.8	0.0	40.0	•		6.0	• •	2000	2	-	•	4.0	16.7	30 .7	15-1	O. 1	8.4	19.3	17.9	12.9	5.0	-	• •	14.2	3.0	14.5	10.0	20.7	4.5	23.6	0.12	2.0	
-	د	4	£.	-2	7	0	-	N	m 4	• 1	Ω 4	1 0	, p	2 2	=	9	٥	0	· ·	ر ا ا	, 4	E	7	ï	۰ .	٠,	j m	4	ທ	9	-15	Ξ	01-	<u>م</u>	, ç	
0	¥	0	0	0																															ه د	, (
SHEET	I	10	0	01	2	10	:	01	2 :	2 :	2 :	•	=======================================	: :	=	2	11		Ξ:	: :	=	Ξ	=	=	= :	Ξ:	: :	=	11	==	12	7.	2 :	21 :	27 61	::
	FC	9.3	8.9	5.5	17.6	36.3	24.1	8.6	12.8	• 1	0.45	7 4 6		12.1	14.0	3.5	1.0	26.7	13.9	C * E T	3.5	11.9	4.8	30.7	6.9	0 0	40.2	7.1	63.0	13,3	20.4	٠ ا	1.6/	20.	ू • • • • • • • • • • • • • •) (
	F	8.6	9.6	8.7	15.1	39,3	23,3	7.4	11.9	0 0	0.4			7	10.7	4.2	4.5	29.1	4-4	0	4	13,3	4.5	29.9	17.9	100	37.1	6.3	0.09	11.4	.53.5	6.9	76.5	8	21.7) (
	٦	8	-7	9-	iO O	4	6	N 1	- (٠ د	- -	4 1	า ∢	מי	٥	-	80	0	0:	: :	. E	-15	-11-	-10	0 0	0 1	9	1	4	e.	2	7	۰ ٥	- (N F	, .
	¥	0	0	0	0	0	0	0	0	، د	o c	•	ء د	•	0	0	0	0	۰ ۵																0 0	
	I	ß	ιĠ	ß	c)	S	ស	ro O	un u	ומ	in u	3 4	n u	າທ	တ	S	ß	ព	ភ ព	n ×	9 0	٥	٥	9	۰ م	0 4		•	ø	ø	9	vo ·	0	•	o (٠,
	FC	9.9	9.6	19•0	39.8	11.3	44.8	7.5	2.0	10.4	3/•B	3 4 4 6	***	9 6	6°E	12.0	20.0	20.7	0°5) 4 0 4	7.9	21.6	36.2	22.8	12.7	7.5	14.7	18.1	32.1	54.6	F • I	11.5	9.6	14.1	23.4	
MACFALLITE	FO	8.5	11.3	19.9	41.6	10.6	4 3 • 0	0		- t	3000	0 0		17.2	9.9	11.0	9.91	19.2	ភ្នំ ស	0 Q	7.6	33.9		24.3	13.4	7 0 9	21.6	18.3	34.9	21.2	4.0	2.6	6.5	14.4	11.2	
MAC	٦	-	Α,	m	4	S	9	1	œ c	٠.	2 :		9 F	2 17	-12	-11	-10	O. 1	9 1	۲	ရ	4	e.	7	- (- د	٠ ٨	n	4	ις.	ø	7	8 0 (٥,	2:	: :
	¥	0	0	0	0	0	0	0	0 0	٠ د	0 0	•					0	•	0 0	> <	0	0	0	0	0 0	ه د	•		0	0	0	0	0	0	5 C	> <
	x	0	0	0	0	0	0	0	۰ د	، د	0 0	,	9 0	-	-	-	-	-	۰.		-	-	-	-	٠.				-	-	-		-			٠.

1. at \$

	C)				٥	0	7	3.3	0.2	15			0.0
	2				9	0	6	3.6	6.4	71			5.7
	2	0 -11			9	0	٥	6.8	7.6	15			1.3
	2				٥	0	01	23.9	16.9	12			1.9
•	2				7	0	4 1 1	10.0	6.8	12			6.8
	2	ĩ	8 51.9		7	0	-13	18.9	13.4	12			0.4
	2	0	7 14.6		^	0	-12	3.8	1.8	12			7.4
•	7	ĭ	6 13.1		7	0	-11	ю Ф	2.5	15			9.0
	N	î 0	5 8.5		7	0	-10	3.1	0.0	12			9.5
	~	ĭ	4 43.7		7	0	0	8.7	10.0	13			99
•	~	0	3 28.3		7	0	8-	7.3	5.3	13			⊕
	C)	ĭ 0	2 53.6		7	0	-7	0.1	8.9	£1			
_	N I	î			~	0	9	23.1	25.1	<u> </u>			2.2
•	N I	0			_		ů,	2.9	2.5	E :			• 2
	n r	- ` • •			۲ ر		4 (5.7	2.0	E .			0. •
	ų r	- ' - c			- 1	-	? (6 50	63.6	2 :			
	u N) 0	0 0 0	21.1			7 ~	13.1	14.0	2 12	7	0 / 0 0 0 / 0 0 0 / 0 0	₽
	ı Nı				. ~	0	۰ ۵	·	10.0	13			80-1
~	2	0			2		-	11.3	12.1	13			• • • • • • • • • • • • • • • • • • • •
	۲,	.7			7		7	4 . U	7.6	13			0.0
	7	0			~		m	10.0	9.8	13			2.7
	٥	5			7		4	12.8	14.6	13			6-1
	~	0			_		ı,	14.5	15.4	E			
	N (_		•	9	11.7	<u> </u>			2.0
•	ווא	0			_		۲ ،	4 1	0 ° E	13			
	וכיו	71-0			~		0	φ ·	0.	± :			6.0
	m i	0 -1			_		Ø,		8.4	<u>*</u>			•
	L) I	21-0			~		20	16.5	10.0	*			⊕
	וליו	0 -11			83		+ 1-		11.5	4			
	ומו	0 - 10			ω		-13		11°3	<u> </u>			•••
_	ו ניי	Š			æ ·		-15		35.2	4 :			0.0
	J.))							10.1	:			
	יזני	. i			2 0 0		1		•				
	מנ	0			9				40.0	4			9
	m	0 -4			60		-		9.8	=			1.5
_	m	0			60		9		25.3	<u> </u>			•• ··
	m.	0 -2			80		-5	4.7	4.8	4.			9*:
	ומו	7			c	0	† '		29.8	<u> </u>			
	יו ני				10 0	0	9		20.8	ខ្ម			
	יו כ	- (0	-	7		0	2 4			
-	ŋ ~	v ^			0 0	9	;			9 4			
	ם ני	? <			.	-	٠ -		0.0	<u>.</u>			
	יו ר	* u			0 a	5 6	٠,		0.46	קיי			
-	י ה	, ,			α	•	3 "	2	6.7	. E			
_	ניו נ				0	0	۱ ۵	28-1	20.05	2 12			
) M	. 0) co	0	r 10	₩ 4	7 4 6	21			·m
_	m	0			60	0	φ.	7.5	6 5 5	12			4
	3	01 0		- 1	8	0	7	7.9	4.7	15			•3
					*	Section 2	100						1000000000000000000000000000000000000

**** 99999999999999 34.55 34.35 34.35 34.35 34.35 34.35 34.35 34.35 36.25 36.25 36.25 36.25 36.25 36.25 36.25 36.25 36.25 36.25 36.35 36

MACFALLITE						V /	SHEET N	• 0 2	-	PART	N					
H K L FO FC H	U	~	¥	۔	FO	J.	π	×	د	F0	, J	I	×	L	6	FC
0 - 1		2		9	5 4	7.0	= :	~ 4 .		8.9	3.8					
0 9	0 9	-		ρ 4	, D	m c	11	ا 	-12	200	Z.0 4.7				•	
20.5 6 1	9 00	•		m	2.8	3.0	12			4.2	0.9					
14-6 6 1	9	-	•	2.	2.7	••	12	-		6.5	2.5					
15.4 6 1	9	Η,		- 0	ى ئ	5.6	2.5			5.5	5.8					
1.5	•			۰-	ָאַרָּיָּ	0	27.	-		ر د د د	10.0					
3.0 3.0 1.9	0 0	-		- 2	4 C	0.11 7.3	12	-		D 0	6.0					
4.5 3.5 6 1	9	•		m	6.4	7.6	12	-		10.0	4.0					
9.9 10.0 6 1	9	-	•	_	6.1	4.7	15	-		3.5	7.3					
3.6 0.4 6 1	9	-	ii.		E. 4	4.0	12	54		6 • 5	1.9					
9.0 2.7 6 1	9	-	•	~ 1	9.11	10.7	15			6,3	7.1					
1 13 7.6 2.1 6 1	9				8 4	6	2 :			M .	o. c					
1 -12 B-0 50-3 6 1	• •		9 0		5.7	G - 7	77			0 K	, ro					
1-11 12.5 12.0 6 1	9	. ~	~	_	4.5	2.4	2	~		7.00	2.7					
1 -10 7.6 . 7.1 7 1	7 1	-	-14		r) &	4.2	12	-		3.9	3.2					
7-7 1			7		0.1	7.0	2 :	- -		14.4	9.0					
1 -2 6.0 5.0 7 1			7 -		9.9	. ·	2 12	i 		9 F	. 4 4					
1 -6 10-2 10-7 7 1	7	-	7	_	4.1	6. F)	13	-		4 5	4. 8					
1 -5 9.1 10.9 7 1	7	٠ -	ĭ	_	3.0	0.2	13	ī 		1:+	1.1					
1 -4 9.4 7.3 7 1	7 1	Ĩ .	ĩ '	.	0 ° Y	5.6	E 1			13.5	0.1					
1 -3 13.5 50.8 / 1			i		8	1 9 0	<u> </u>				14.2					
1 -1 5.5			1		30.6	33.7	13	-		4.0	9.01					
1 0 3.0 0.2 7 1	1 2	-	Ĭ		7.7	5.6	13	-		10.1	6.2					
1 1 8-1 10-7 7 1	7 1	ï -	ï		11.0	13.7	13	_		3.5	4.9					
1 2 9.4 10.7 7 1	7 1	7 - 1	-5		3.8	4.8	13	·		3.5	0.3					
1 3 18.9 16.0 7 1	7 1	- -	7		7-4	7.7		_		4.7	0.2					
1 4 19.2 19.2 7 1	7 1	° .	٥		6.5	5.2	13	_		17.2	15.5					
1 5 11-1 11-8 7 1	7 1	-	-		19.0	20.9	13			8.7	7.1					
1 6 3.0 4.4 7 1	7 1	7	N		7.6	7.9	13	-		26.5	22.3					
1 7 7.8 8.8 7 1	7 1	F)		_	21-1	24.0	13	-		7.2	6.3					
1 8 11.6 12.5 7 1	1 2	*	*		12.5	13.0	13	_		6.4	0.8					
1 9 5.5 7.5 7 1	1 1	 		ю	11.4	13.2	13	_		5.1	1.3					
1 10 15.2 12.7 7 1	7 1	-		٥	3.2	1:1	<u>+</u>	ī		4.0	2.2					
1 11 8.5 8.1 7 1	7 1	-		۲.	ن ا	3.1	14	7 		13.6	11.1					
1 12 12.6 7.8 7 1					ο Ψ ο π	2°0	4 4	1 1		4.2	4 °					
1 / 001 100 61- 1	,	-	١	,	?		-			0						

		31.5	-2	5	1	8.6	7.9	6-	_	1	2.0	4-4	11 11	4	The second second
	3.0	6.9	t M	VN		0.0	200	-10	01		1.5	3.9	7 0	, 4	
		24.8	φ.	N C	- -	۳ ۳	0 r	2 -	- -		7.3	7.9	8 .	∢ ∢	
•		41.9	Ý	Ŋ	-	9.9	L. 4 . 7	-13	_		2.0	2.9	1 7	4	
		10.9	-1	N	-	2.0	7.5	وي	_		11.6	10.1	1 6	4	
		8.2	4	N		6.6	14.6	^	_		10.3	8.8	1 5	•	
		2.9	9	1 0	-	10.9	11.8	ø			5.8	5.7	•	. 4	
		2		N C	-		, r	ינו	• •			, ,	, r	t 4	
		13.6	-12	N C		• •	φ r	ก ∢	-		1.7	4 6	- .	4 ∢	
•		7.7	-13	N	-	5.6	0.0	N)			J. 4	7.0	0	4	
		20.9	13	N	0	3.5	3.0	-	_		9.6	6.5	1- 1	4	
		19.3	12	Ų	0	0.1	3.1	0	-		2.7	5.9	7- 1	4	
		1001	11	N	0	19.1	17.9	7	~		17.2	19.1	E- 1	4	
		13.6	9	N	0	6.3	7.1	+2	_		20.8	21.3	4-	4	
		2.0	0	N	•	33.5	29.9	P)	_		1.3	2.8	12	4	
		42.5	· «	IN	0	7.4	3.0	4	~		12.7	13.1	- 9-	4	
		21.6	۰ ۱	1 ~	0	13.4	11:1	9	. ~		10.8	10.4		•	
		34.0	Ω¥	חני		• •			•			0	, a	r 4	
		48.0	*	N (15.6	14.4	Θ !			8	m .	01 1	∢ .	
		3.2	e	N		0.8	3.1	ô	-		4.8	7.8	1 -11	4	
		29.3	N	N		11.1	12.6	-10	_		7.9	11.2	1 -12	4	
		16.1	-	· (4)	,	7.3	0	-11			5.2	6.9	1 -13	4	
		8.5	i i			2.8		-12				12.5	77 - 1) 4	
		13.7	ů.	e4 (0	8	0. [- .		m,	0.4	= :	י ניי	
		10.2	9	-		11.4	15.0	80	-		3.1	3.6	01 1	m :	
		4.9	7:	-	_	6.6	5.0	7	-		14.3	14.3	6 1	m	
		10.7	•			•	E CO	٥			12.7	12.7		m	
	A	10.01	7 -		51	9 6	0 0	t ru			23.0	21.5	o r	o m	
		7.8	'n	-		9.0	2.0	n .			70°7	0.61	G .	י ני	
•		5.6	4	-	-	8.8	7.9	N			3.7	3.2	4	m i	
		14.3	r P	-	_	17.9	15.1	=	_		2.1	3.4	 	m	
		2	ì	4 =	•	7.0	9 40	• •			7.4	8.2	- ~	(ייי נ	
		7.5	e p 1			18.7	17.7	V -	 -		3.45	7 ° C	o .	יוניי	
		8.2	0	-		13.2	11.9	m i			49.7	55.8	ī- !	m i	
		15.8	- 10			0.8	4.4	1	-		7.3	7.9	1 -2	m	
		4.8	Ŋ	-		10.2	9.6	9	- 8		25.6	26.3	1-3	n	
		0				8.0	6.3	9	oso		89	1 E)	? •	; m	
		•	ī °			? .	0.11				· -		9 4	יי כ	
		7.4	Ş.	-		0.7	9.9	0.0	60 (19.7	17.5	۲ ·	ו לח	
		7.2	ŋ	-		20.5	19.0	-10	80		16.5	14.6	- -	n	
		10.7	4	-	14	10.6	10.7	-11			13.5	11.8	6	m	
		10.0	o un	•		2.5	3.7	-12	9 00		7 ° 7	0.0	1 - 1	מו ל	
		16.5	7		7 9	0 0	12.	E1-	o o		7 4	4.6	71-1) m	
	ļ	12.3	-		14	8-9	11.6	41-			4.7	3.7	1 -12	۳	

																			•														
)	20.6	20.5	2.0	15.1	1.5	6.3	20.1	31.6	11.2	10.2	6.3	1.4	1.1	11.8	19.8	15.1	16.9	2.9	17.0	1.1	50.5	14.3	20.3	1.0	44.5	13.5	55.0	11.1	5.2	10.8	75.8	16.7	15.2
	21.3	20.0	7.7	14.0	7.7	5.1	18.3	28.1	10.7	8.4	4.4	Ø• E	4.1	5.0	23.6	15.4	17.2	4	14.5	2.8	40.4	12.3	21.7	9. ¢	50.8	14.5	55.7	11.3	7-1	10.5	74.5	15.4	13.5
						2 5			8	0 ،	2 10	11 2	2 12	2 -13	2 -12	-11	2 - 10	٥ <u>.</u>	8- 2	2 -7	9-	<u>د</u> د	*	۳, م	- - -	7	۰ د		2	<u>س</u>	4	2	۰ 0
•	-	-	-	-		-	-	-	-	-	_	-		N	N	٨ı	n,	r.	N	٦	N	N.	N	٠ «	nu	œ	N	~	N	N3	N	N	N
	2.9	13.5	3•3	5.9	7.1	3.0	15.8	2•3	3.0	1.7	1.2	4.4	1.8	1.7	2.3	4.2	2.8	17.3	3.6	10-1	4.1	1.2	11.5	4.6	6.3	14.8	4.2	21-1	7.9	9.3	5.6	4-1	0.2
;	4.5	12.3	3.0	5.5	5.8	7.0	13.4	2.9	3.0	3.1	5.4	3.5	7.1	4.1	4.6	8.0	4.3	18.8	6.3	9.5	3.2	3.5	10.3	5.6	0.4	13.6	4.9	19.7	7.6	9.6	6.7	3.6	3.B
,	1 -7	1 -6	1 -5	1 -4	1 -3	1 -2	1 -1	0	1 1	2 2	1 3	1	1 5	1 6	1 7	1 -13	1 -12	1 -11	1 -10	1 -9	8 1	1 -7	9- 1	1 -5	1 -4	1 -3	1 -2	1 -1	0	1	1 2	1 3	4
	9	01	01	91	10	01	10	2	01	01	01	01	01	01	01	11	11	=	- 1	11	1.1	11	11	1.	=		11	*	=	:	11		11
•	1.1	5.6	13.7	5.6	14.2	1.1	20.0	0.8	5.4	18.9	4.1	2.2	13.1	1.8	32.8	2.2	26.9	1.0	7.8	4.9	1.2	2.9	12.3	2.2	15.0	6.3	6.2	11.6	3.7	7.3	4.3	6-9	1.2
	4 - 1	11.7	13.0	4.2	13.7	3.0	17.8	2.8	3.7	20.0	4.0	3.1	9.6	3.3	30.7	3.6	24.9	2.9	7.0	5.5	3-1	3.4	12.4	4.2	16.9	4,8	6.3	14-1	5.1	8 • 6	5.0	5.3	5-9
	1 -13	1 -12	1 -11	1 -10	6	1 -8	1 -7	9- 1	9- 1	4- 1	P	2- 1	1 -1	0 1	-	1 2	E	*	9	9 1	1 7	1 8	6	10	1 11	1 -14	1 -13	1 -12	1 -11	1 -10	6-	1 -8	1 -7
0	ß	ເດ	S	CI.	េរ	מו	ß	S	ı,	S	S	S	S	S	S	ß	S	ı G	ß	S	S	ú	ĸ	S	2	٥	ø	9	۰	ø	•	٥	9

22.8

										ı																														
	FC																																							
	FO																										•											,		
	ر																																							
	¥																																							
	x																																							
	FC	13.7	6.5	14.2	V C	7.01 7.E1	25.5	200	3.9	11.7	17.5	8•3	8.4	2.8	10.6	13.9	6.0	3,3	2.5	0.5	16.0	7-6	1.5	1.8	2.7	16.1	7.8	D .	0 6	. a	4	0.0	1.6	1.3	6.3	0.5	3.3	11.0	8	7.7
PART	FO	22.9	11.9	10.	o •) 4 F	4.15	3.8	4.9	13.1	27.5	7.3	12.3	8	11.0	20-1	14.3	4 • 3	8.8	4.2	18.8	13.7	4.6	7.8	8.2	27.3	B 1	ا م ا) r		, E	2.0	10.1	2.9	8.2	3.4	4.8	13.0	B 1	6.3
N	۰	01-	o o	B !	, (, r	7	D	7	7	0	~	N	Ģ	8	-1	Ŷ	ជា	4	ņ	2	7	0	Ŷ	ç	4		N I	า ∢	ruc) vo	7	8	o,	01	11	12	-13	-12	-11
• 0N	¥		8																																					
SHEET NO.	I	4 ×	4	4 :	4 :	<u>.</u>	. 4	7	1.4	14	4	14	14	15	15	16	5	15	15	15	15	15	15	16	16	16	0	0	5 C	,	, o	. 0	c	0	0	•	0	-	-	
	FC	12.3	7.9	4 L	, ,		11.8	6.1	15.2	15.1	30.2	11.6	21.1	5.1	31.3	12.9	23.2	1-1	7.1	15.9	46.9	10.7	5.7	8.0	40.5	11.4	18.6	0.0	7°01	0.0	5.0		0.8	7.9	18.3	10.5	9.1	6.8	2.5	12.2
	FO	10.2	9.0	ر د د د	0.4	7.00	10.7	7.2	17.5	13.8	29.7	12.9	18.3	3.9	28.3	11.4	25.5	4.4	8.1	14.7	45.4	8.8	4.8	7.1	37.3	6,0	21.0	3.7	7.0	7 90	9.0	, m	3.4	6.9	17.8	10.0	B • 2	6°6	3.0	10.4
	٦.	m	41	ın v	۱ ه	۰ «	0	-13	-12	-11	-10	61	0	-1	٥	5	4	Ð	-2	7	0	-	N	ო	4	S	9	٠ -	10 C	۲ :	77		01-	0	8-	. 2-	9	φ ²	7	5
	×	N	~:	N (N C	J A	u ~	ΙŅ	Ŋ	Ň	Ņ	~	N	cJ	N	2	~	N	~	7	Ŋ	٦,	2	N	N	C)	N	~	N O					2	N	2	ત્ય	23	7	2
	I	7	~ 1	P 1	~ 6	∞	- ~	• 00	80	Φ,	80	c ;	6 0	9	€	69	Φ.	60	9	80	89	80	89	8	60	6 0	89	80	1 00 C	0 0	• 0	• •	0.	٥	0	٥	٥	Φ.	O	6
	FC	10.2	31.6	ສຸເ ເຄີຍ	33.5	0.0	, 4	2.1	3.8	2.0	12.6	6.3	1.0	8•6	14.1	14.4	13.1	32.9	18.1	15.3	18.8	5.4	10-1	9•9	22.2	10.8	2.0	11.8	D :	ų c	0	26.3	8.1	12.7	4.4	24.0	5.4	34 • 5	4.0	13.8
MACFALLITE	FO	7.8	27,8	0.0	34.	ا د ته بر	2.71	ູນ	6.3	3.0	12.0	7.3	2.8	10.2	11.6	16.8	10.8	43.2	18.5	23.7	18.2	3.4	8.5	6.5	19.7	10.1	2.0	10.4	5.0 0.0		4	38.5	10.0	14.5	5.5	24.8	5.5	31.5	3.5	15.2
MACF	٦	7	8	ο (0:	= 2	2 1	-15	: :	-10	6	8	-1	9	5	4	e.	7	7	0	-	7	E)	4	ß	9	۰-	6	o :	? :	12	4.	E	.12	-11	-10	0	8	-1	9
	¥		2																																					i
	I	N	2	C) (N (חנת	V	מיו	יח ו	· P)	m	ю	'n	m	m	m	m	m	m	m	m	m	М	m	m	ы	m	P) .	יו ניו	n 10	ייו ני) 4	• 4	4	4	4	4	4	4	4
•	•	(3)		(9		•) _		@)		6		,	0		,	0		-	9	1	,	0		(3		•)		6) 		•)		9	

1.2

e

N 1	٠٠ د م	12.1	12.2	0.0	2 -2	22.1	26.5	5.	ED 16		ው ቀ ቀ መ	1 • 1 · · · · · · · · · · · · · · · · ·	
'n	•		7.4		7 0) M		2 9	N 18	
Ņ	ניז		8.6		2 1	6		90	מיוני		12.5	12.5	٠
-	_		3.2		2 2			, w	m		2.7	2,7	
0	4		4-1		2 3	m.		· 0.	m		28.9	30.4	
- - (- 4		13.4		2 0	•		m' c	m r		0° 0		Q
u m	د		0 - 6		0 v			· ·	ח רי		0.80	38.2 7.1	•
4			2.6		2 7	*		8	m		16.3	17.7	
ß	-		5.9		2 8	4		9	m		3.2	0.2	•
9	N		9.1			. 8g		-	Ð		11.1	£-66	
-	,	٠.	4. 9			<u>.</u>		4	m		7.7	7.4	
Φ (N		8.4		2 -11	m i		٠.	m r		21.0	.1 .5 .1 .2	
•	•		٥.						יו ני		0 :		
	•		1 4		, .	0 4		7.0	0 K		2 2	0 m	•
			•			ß		2 0) M		14.8	16-8	•
			1.1			5.		7	n		2.8	4.0	
	-12 1		2.9		2 -5	7.1			L.S		3.0	1.7	•
			4.0			40			E		7.0	0.0	
			7.1			2.0			e		3.6	3.4	•
	ó		6.5		2 -2	23.			m		4.0	0.5	
	φ.		ر م و د		7 7	₹ .			ונחו		*	O	
			D 0) •	• :			יו ני		0.01	7 • v	•
	9 10		9.0		- ~	51.5			3 F)		 	درا ن د د د د د د د د د د د د د د د د د د د	
	•		5.7		5	m			i in		2.0	1.9	•
			0.8		2 4	12.			m		16.1	16-4	
	75		0.4		2	14.			m		ر ا	6. 5	
			2.8		9 1	10.5			m i		7 °8	. 8	
	0		F .	<u>:</u>	2 - 7	12.			ייח		۳. ۵.	6.7	
	• •		9 F	: =	21.7	20			א כ		200	0 4	
	י י מונ		0.0	: =	2 -11	15.1			ט ני		7.7	500	•
	4		5.4	=		9			l PO		8.0	1.9	•
	2		3.8	=	2 -9	8			m		2.8	1.2	•
	9		9.0	11	2 -8	2.0			E)		4.4	6.5	
	7		1.3	11	2 -7	6			m		0.0	6.6	
	8		8•1	= :	9- 2	20			P)		Z .	0.0	
	•		a.5	= :	2	9			P)		2-91	17.2	
	۰.		e r	·	4 1	W .			ינח		18.0	18.7	
	7		, ,	::	5	,			ור			× .	
	41-		0.0 -	:	2	0 6		ο α ο α	m r	~ a	11.6	130.1 0 - F	•
• ••				: :	1 0				יה כ) ())	
				: =	• -				3 (*)		13.5	0.00	
: :			0	: =	2 2	9			מיי		8.2	7.6	•
v			5.4	11	2	E E			m		12.0	9*9	
8	N		3.2	11	2 4	3.6			n	-13	7.1	2.9	•
	1	İ	1.7	11	2 5	4.1	ļ		E)		4.6	4.4	

	5.0	6.8	14.6	13.3	4.0	4.0	1.5	15.6	6.7	31.8	0.1	9.51	9•9	2.7	3.1	17.3	5.7	16.5	10.8	9•6	2,3	3.1	5.7	7.0	4.5	2.6	7.5	7.0	16.3	12.9	10.0	18.9	7.9
,	7.6	1.6	13.8	12.2	2.7	4.6	3.6	12.9	7.2	29.0	2.8	16.8	7.7	3.3	4.1	16.4	5.8	15.9	12.0	9.0	9.9	5.6	8.2	6.1	5.0	8•0	6• 9	6.9	15.3	11.7	11.4	19.0	6.3
	3 -10	6- E	3 -8	3 -7	3 -6	35	3 -4	ю <u>-</u>	3 -2	3 -1	0 E	3	3	3	4	3	3	3 7	9	3	01 E	3 11	3 -13	3 -12	3 -11	3 -10	0 I	3 -8	7- E	9 -	3 -5	9 1 E	E .
ı	E)	n	Ю	m	m	m	n	m	m	m	m	m	m	m	m	IF)	m	m	m	m	m	m	4	4	4	4	4	*	4	4	4	•	4
	13.7	6.2	18.7	7.4	15.3	15.1	28.4	12.3	13.5	2.0	28.7	5.2	27.6	3.6	3.0	5.1	30.6	1.5	4.6	8.8	13.3	2.6	0.5	13.5	11.7	4.7	9.0	1.8	4.5	13.1	9.2	7.0	7.7
	21.6	13.6	22.0	8.2	17.3	12.4	28.3	12.6	10.3	3.2	30.0	6.7	27.4	6.4	6.7	8.5	41.8	4.7	6.7	7.3	14.8	2.9	3.5	11.3	14.5	5.2	4.E	3.4	6.7	9.6	11.2	11.0	12.2
	-12	-11	01- 3	0	8-	-7	9-	6.	4	ñ	2-	7	0		2	E.	4	6		-10	0.	81	-1	9-	5	4	£	-2	7	0		2	۳
										12 2									13	13	13	13	13	13 2	13 2	13 2	13 2	13 2	13	13 2	13 2	13 2	C
	14.4	20.5	4-1	59 • 4	14-4	21.2	16.5	19.9	2.7	42.3	9. 0	1.5	14.0	28.5	5.0	18.3	6.0	0.4	13.2	14.4	20.1	15.1	7.8	7.7	18.4	31.7	2.5	1.7	0.0	13.6	31.0	13.6	15,3
	13.9	20.6	3.0	55.0	13.7	22.8	15.6	17.9	2.7	38.5	2.9	3.0	15.2	31.1	3.0	25.2	4.8	4.1	13.7	17.5	18.9	12,3	3.0	6.4	18.3	29.1	5.1	2.8	7.3	12.7	29.3	12.0	12.5
																														-			
	9	9	9	6	9	9	6	9	9	6 2	9	9	6	6 2	9	6	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7 2	7

3 -11

11:1

23.4

21.6

u	
-	
_	
_	
_	
⋖	
4	
ACF	
⋖	
I	

SHEET NO.

FC

_																																									
FO	•																																								
د																																					•				
¥																																									
r																																									
FC	39.7	11.0	10-1	5.2	35.8	17.4	30.3	9•9	18.9	7.3	48.6	6.8	12.3	4.1	19.2	2.3	25.6	7.9		9.6	5.5	14-1	10.1	0.0	12.4	17.7	6.9	12.5	3.5	11.7	11.9	11.5	6.4	9.5	29.0	13.8	14.2	3.2	3.6	16.7	7.8
FO	37.8	10.2	Q.	4.6	32.6	17.0	29.4	6.3	8.61	7.1	45.3	6.0	11.2	5.0	17.9	3.6	25 • 3	6.9	3.3	14.0	5.6	17.1	10.3	2.8	11.3	16.2	6.3	11.4	3.6	10.3	12.7	10.5	4.2	8•3	29.3	12.6	14.2	3.2	4.0	17.1	8 • 5
_	Ð	-1	٩	5	4	m	~	-	0	-	N	n	4	S	9	~	8	0	9	Ξ	-12	=	2	ņ	8	-	9	Ŷ	7	۳	2	7	0	-	~	m	4	D	v	^	
¥	4	4	4	4	4	Ŧ	4	4	4	4	4	4	•	4	4	4	•	4	4	4	4	4	4	4	•	4	4	*	4	4	4	4	4	4	4	4	4	4	4	4	
x	N (Ni	N	N	2	2	Ŋ	Ŋ	N	2	~	~	N	N	N	2	2	N	a	N	m	m	m	m	Ð	m	m	m	m	m	m	r)	m	m	m	m	m	m	m	m	3
FC	0.0	3.1	2-6	+• -	9.01	2-1	3.8	13.7	3.9	0.9	2.7	3.8	13.8	2.2	0.8	0.8	2.3	0.5	1.2	0.0	9.0	11.3	1.1	4.9	3.1	1.0	7.6	2.3	4.8	4.6	2.8	16.6	6.9	9.8	50 T	1.4	0.0	1:1	6.3	4.2	6.7
FO	7.3	0.0	7.8	E.	8.0	3.1	3.8	13.2	2.8	6.1	2.B	5.0	13.0	2.9	2.9	3.1	3.2	3.4	3.6	4.0	4.0	12.1	5.9	6.9	3.2	3.1	9.5	3.7	5.4	10.2	4.6	16.8	6.8	12.2	5.5	3.5	6.3	0.4	6.7	7.3	9.3
_	7	7	= :	0.	٥	8	~	9	9	4	m,	2	7	0	-	N	m	4	ro.	ø	2		0	ō	9	~.	9	5	41	r T	2	-	0	-	N	m	4	ß	-	0	٥
¥	m r	?	m	n	m	m	m	Ю	m	m	ы	٣	m	'n	n	ы	m	М	'n	m	E)	'n	n	m	m	m	m	m	m	m	L.	m	m	m	m	L.	m	m	m	i I	
I	٥.	0.	0	01	01	0.	2	10	0.	01	9	10	9	10	10	10	10	10	10	01	::	==	=	=	11	=	=	=	=	=	11	1.1	1		11	11	=	=	12	12	12
FC	3.7	5.	3.2	5.4	2-5	3.8	4.3	6.9	8.6	3.7	0.4	6.2	3.2	5,2	2.4	5.4	7.3	2.4	7-4	0.2	15.5	0	6.2	15.1	1.1	1.7	9-1	6•0	29 - 4	0.5	28-8	0.4	1.5	5.5	0.0	1-8	8-7	1.9	6.3	2.6	4•3
FO	2.0	0 1	9 • 0	1 • 0	2.6	5.0	0 °E	9•9	8.2	5.2	3.2	4.7	5.2	4 • 2	5.8	9.0	4.0	3.0	9.5	2+8	14.1	2.7	5.5	14.7	2.7	2.7	6.1	2.7	26.7	2,8	26.6	5.1	2.7	6.5	0 • 	3.2	8.9	4.0	7.2	12.1	3.3
_	۲,	7	0	-	7	m	4	2	ø	1	8	٥	01		-13	-15	-1	-10	ņ	8	-1	9-	-5	4	-3	-5	7	0	-	2	m	4	ı,	9	7	8	٥	9	E.	-12	=
¥	LJ L	า :	m	m	m	E)	m	n	m	m			m																							m	m	m	i.	<u>ا</u>	
I	*	.	∢ •	4	∢*	₹	4	∢	∢	4	4	4	4	4	n	10	ស	ເດ	۳C	2	ß	ស	2	2	Z.	ស	Ω	ស	ę,	ξ	υ	ស	တ	ß	ιΩ	ß	2	ស	o	•	9

		24.5	٥ و	4 4	o k	3.15	30.0	n «	• •	, c		ų -	. ç	ט נ) 6 0
				•				4		c		,	•	•	
		3.1	60	4	ω	28.4	26.2	4	4	0		9•1	8	m r	a
		4.0	1	•	ĸ	13.5	13.1	m	4	0		3.0	٥	n	89
		0.9	ø	•	21	0.0	0.6	N	•	0		14.5	-10	m	80
		2.0	. rb	4	ο (c	9.4	3.0	,	,	0		9.9	-11	m	60
	17.4	0 F	n 4	• •	no so	P • 0	6.7	۳ م ا	iO EO	12	0	3.6	-12	. n) 00
•		15.2	N I	4.	S	2.4	0 4	4 !	m	15		9.7	0.	m) m	~ ∘
		2.5	-	4	ß	9. 4	10.9	9	e	15		6.3	8	m i	~
		2	0	4	ı.	# #	7.0	9	מו	15		3.4	7	m	7
		7.7	1 -	4	, ro	2	10.5	-1	n	12		3.2	v	М	~
		2.5	? ?	4	ם מ	7	9.2	. 8		15		0.1.	· ro	m	~
		73.6	, ,	•		V F	7	-		: :		10.8) 4	נא נ	. ~
		1011	7 1	•	n u	• •	. 4	7 6				9 10	J M	m	. ~
		8	9 4	• •	ត ម	7		7 -		<u> </u>		1.61	۰ ۸) M	- 1-
•		9	,	4		7 1	1 0	7		* *			۰ -	יו ל	. ~
		0°	9 1	•	: a	7.2	2.1	4 I		4 .			; ;	יו ני	~ ^
		24.0	3	•	ß	7.7	7.9	£		7 7		5.1	2	ו מי	٠ -
		16.9	-10	4	ß	0.2	3.6	٥		4 11		13.6	E,	m	_
		2	=	•	വ	10.5	14.0	~		4		0.0	1	m	7
			2	•) W		, K					40.6	1	m	7
		12.3	9 :	∢ •	∢ (5.0	9.01	N C		£ :		20.4	7	יו ני	
		17.1	O,	•	∢	21.1	25.7	-		13		2.8	9	m I	7
		24.4	80	•	4	5.0	5.7	0	e	13		4.2	6	m	7
			יין ס	•, •	• 4	13.7	16.3	7	ח ני	13		2 2	-10	m	
		2.5	ις.	∢ .	4	6.1	m .	ا ا	60 1	£ :		ر د د	-12	יו ניי	
		42.1	4	4	4	9. 9	4	4	٣	13		4.1	E1-	m i	~
•		16.9	m	•	4	10.1	12.2	ı,	F)	13		3.8	o	m	v
		8	• ~	4	•	9	7.7	9	מו נ	2		8 4	80	m	9
		21.1	o ~	4 4	• •	6.5	18.5	ê 7	יו ני	7 -		מיים	۰ م	א ניי	•
		5.2	7	4	∢ .	12.7	12.8	6	in i	ET :		Ø (er v	יז (יי	•
		21.7	7	4	∢	2.0	3.9	-10	m	13		4.4	4	m i	•
		0.6	ñ	₫	∢	ດ	4.3	-11	ю	13		7.8	m	in i	•
		4	4	4	• ◀	7.0	11.1	4		12		5.1	N	m	•
		0 K) ()	•	3	4	8	ım		12		3.1	-	n	9
		30.05	1	•	1 4	2 6	9	٠,		2.5		2.7		m	9
			0 1	•	* •	•	6.0	•		2 -		11.8		m	• •
		20.1	0 0	∢ <	∢ •	9 6	2 F	(12		7.6		יא ני	o (
		13.4	-10	◆ ·	∢	4.9	3.2	-2		12		2.8		י ניי	•
		14.1	-1	4	4	5.9	8.3	e.		12		2.7		m i	9
		22.1	-12	∢	4	6.1	5.6	4	n	12		5.2		m	9
•		9.6	+13	4	4	0.3	9.5	S I	, ID	12		2.B		m	•
		10.0	-	4	ניונ	7.5	8.6	ij	J M	12		3.7	η η	n	• •
		υ.		* <	ייני	y 10	, c	1 0	7) (7	7 :) M	•
			٥	٩			0					٥	1 10	6	-

																											•						
2.5	0°3	4.0	21.2	13.8	14.3	4.7	27.3	5.2	43.2	9.5	11.1	8 2	54.3	2•3	19.5	11.2	15-6	12.5	39.5	0.2	5.5	5.6	6	1.0	2.4	0.0	6.4	6.5	6.5	14.8	2.6	1.4	17.3
5.0	11.9	4 • 2	23.2	13.8	13.5	2.9	26.1	4.4	40.5	6.6	10.6	5.9	50.4	2.6	17.8	10.9	13.8	12.2	40.5	3.8	6.1	7.7	14.9	5.1	3.2	3.0	9.6	5.9	7:4	13.8	2.9	2.7	15.7
-13	-12	==	-10	6	8	-1	9	φ.	4	E.	2-	4	0	-	2	m	4	ß	ø	7	80	0	-13	-15	-11	-10	Ŷ	8	-7	ģ	içi	4	E.
9	c	0	٥	9	ø	•	•	9	ø	9	٥.	9	•	9	9	9	•	•	9	•	•	•	4	4	^	7	7	7	*	7	7	7	7
4 • B	2.0	8.8	55.9	2.4	18.3	2.0	8.6	54.4	14.2	8.5	4.0	1.5	4.1	10.0	25.3	15.0	7.8	1:1	10.6	12.9	12.1	20.9	15.9	3.0	8•2	9.4	8.8	15.7	5,9	22-8	5.4	10.5	13.2
0.0	2.7	0.5	28.1	E • E	23.2	3.6	10.1	13.7	16.3	9.5	3.5	9.4	3.6	10.0	23.8	12.8	6.9	2.0	7.3	13.0	11.6	19.3	14.5	2.6	6.0	4.1	10.4	17.6	10.7	27.5	7.2	12.0	12.5
7	89	٥	10	11	12	-12	11-	01-1	6	8-	2- 1	9	2	4-	E.	2 -	7	0		2	m	₹	IO.	•	~	0	0	10	11	-12	-11	01-	o,
•	0	0	0	•	0	~	-	~		-	1	-	-	- M	7	7	4	1	7	*	7	~	7	-	-	7	-	-	~	7	ζ.	2	2
6.5	1.7	7.3	15.0	8.2	9.9	11.8	8.0	8.7	3.4	10.1	2.8	4.5	8.8	0.7	2.5	4.4	9.5	2.6	14.1	2 • 1	3.6	9.2	3.4	22.4	0-9	8.3	0.3	2.8	4.4	6.2	4.0	25.2	8-8
0.0	2.7	8.0	13.7	9.5	5.3	11.4	9.1	7.4	5•9	9.01	5.3	3.6	11.9	4.2	3.8	7.3	12.0	3.2	13.0	3.9	2.8	8.2	3.7	21.0	9.9	7.6	2.7	2.8	3.8	8•0	3.2	26.0	11.1
-5	4-	£.	-5	; -	0	-																-5	4-	m -	7-5	7	0	-	7	m	4	2	٥
	r	'n	L.)	IT)	'n	L)	3	II)	Ю	'n	n	n	n	n	'n	r	'n	L.)	E	'n	E	Ð	'n	3	Ç	'n	n	E,	m	n	'n	S.	n

50																																								
112	•																																							
ب	,																																							
¥																																								
I																																								
J.	,	4.1	3.0	2•0	2.9	F.3	1.4	0.2	11.9	5.0	2.8	3 . 5	3.1	5.6	0.4	3.9	2.7	1.0	0.1	2.0	9 • 0	7.8	6.5	14.5	3.2	8 6			11.2	4	12.0	7.1	6•9	1.0	0.1	2.6	0.6	13.7	3.5	
FO) ·	3.7	3,3	2.4	2.4	2.4	4.6	2.4	10.1	5.5	2.5	£0 €	2.7	7 . 4	3.0	5.6	5.8	3.1	5.3	2.8	2.7	7.5	0.0	14.9	ب س د	m .	 		10.7	4.7	11.7	7.9	7.3	2.9	3.1	3.4	10.4	14-1	2.8	
١	ı	9	ç	*	,	-5	7	0	-	4	m	4	ß	9	7	æ	-12	-11	-10	ŏ.	9	-1	9	5	,	n (, .	• •	-	N	ю	4	ro O	ø	7	15	-	-10	6	
¥	:	2																																						
I	=	•	٥	٥	٥	٥	۰	v	•	•	٥	ø	v	9	•0	ø	-	7	7	^	7	7	7	7	~	- 1	~ •		. ~		7	-	~	7		æ	8	æ	60	
FC	ı .	7.0	3.5	3.8	7.3	4-1	3.9	0.8	5.0	1.0	7.2	0.5	9.0	0.8	9.6	3.3	18.3	4-1	9.5	0.4	2.6	5 5	9.1	8•6	P (2 6	7 4 5	7.2	3.7	1.9	10.0	0.9	8.3	13.1	2.0	6.7	6.7	4.0	
6		2.6	3.4	2.9	8.7	3.6	5.9	3.1	5.1	5.3	7.4	2.6	0.4	2.4	10.0	3.2	16.7	4.1	7.6	2.3	1.5	5.8	2.5	7.8	9.4	m ;	13.) P	6	3.2	7.3	10.8	4.8	6.8	13.2	2.5	7.7	6.9	it)	
نـ	ı	S	9	7	60	6	02	=	11	2	6	æ	-1	Ģ	က္	4	m	2	-	0	_	~	m	4	co ·	•	٠.		, 0	=	2	=	2	ó	8	-1	Ģ	-5		
×	:	2	ŝ	ល	S	ß	ស	9	S	e G	S.	D.	ß	S	ω	ī,	ß	ស	G	ιΩ	S	S	ល	co Co	ıo ı	ı,	ם מ	ט נ	מו	_s	ι I	1	10	٠ ري		ۍ	· ~	٠,		
I		0	0	0	٥	0	0	0		-	-	-	_		-	-		-		-	-	-	-	-	 .	⊶ .	٠.		-	·	ď	N	2	2	N	N	٨į	2	Ŋ	
FC	,	17.3	8.5	7.9	7.6	1.6	6.8	6.9	9.8	9.6	1.7	2•1	24.4	1.9	1.7	0.9	29 • 5	6.7	18.2	3.2	51.9	14.5	43.9	1.8	11.5	4 i	7.77		3.6	9.9	3.2	2.2	8.5	6.7	6.5	9.0	5.1	6.2	12.4	
F0	1	16.1	8.5	6.8	7.2	2.6	8.1	9.6	12.2	0.6	3.2	3.5	29.0	7.5	5.2	5.1	28.5	9•9	16.9	2.6	20.0	13.0	39.8	5.6	11.0	4.7	9.17	0	8	7.5	5.8	3.6	13.7	7.4	7.4	2.9	5.3	6.4	12.1	
٦		7	7	0	-	2	m	4	က	٥	7	80	-12		-10	O.	8	-1	o	ņ	4	e,	2	7	٠ د	- (u m	4	ະນ	9	7	-12		-10	6	8	-1	9	ស	
¥		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	₹	4	4	æ .	•	• •	٠ -	4	4	4	4	4	4	4	4	4	4	4	4	
I		7	7	7	~	~	7	7	7	7	7	7	ø	a 0	80	Φ,	8	89	80	60	æ	8	æ	æ	no d	n) (p a	ο	00	80	80	٥	o.	Ō,	٥	٥	O.	0,	٥	

			•		•	9		,	•		•	•		1	9		•	9		(8		•	((3		4	•	-	•)
			,																							• •					•		
																						-	٠										
	0 0	4 5	4.9	11.0	2.9	11.7	5.1	4.0	3.1	4.9	2.4	5.2	2.4	5.G	3-6	4.2	2.3	4.3	5°8	2.1	٥.4	2.2	0.3	5.6	6.5	0.7	3•3	1.6	0.7	9.6	3.7	7.7	
		4 5	0.4	12.2	4.6	13.0	5.4	4.9	3.1	4 . 7	7 - 3	3.2	3.0	3.0	5.0	2.9	2.9	3.0	0. 0.	3.1	4.7	4.4	3.3	8.8	9.6	3.2	3.1	3.1	3.1	12,3	6.2	6.8	
		ရ ရ																															
		11 5																															
•	-	-	-	-	_	-	-	~	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-		-	
	0 6	0.5	E)	9.6	6.3	11.3	5.6	12.0	2.5	11.9	1.2	1.4	11.4	5.0	2.3	8.8	3.5	17.0	6.0	11.4	0.0	7.8	1.8	2.5	2.6	8.9	6.9	1.7	4.0	0.0	4.2	0.7	
		2.7	0.9	11.4	7.7	10.9	5.9	12.2	2.6	12.5	2.4	2.4	10.6	5,3	2.6	7.6	2.5	15.7	2.4	10.9	4.0	6.5	3.2	2.9	3.0	10.7	7.7	5.5	6.5	2.1	J.,3	2 • 5	
	o vo	۸ (8	O.	-12	-11	-10	0	8.	- 1	9	ů,	9	n	7	- 1	0	-	2	m	4	ß	ø	7	ω	٥	-15	-11	01-	6	8	7-	
	ព្រ	o ro	ດ	Ð	ດ	ດ	ເດ	Ð	S	ß	κ	ß	ហ	ŝ	ល	ß	ນ	ß	10	ß	ß	εO	r)	ŝ	ı,	ß	Ď.	'n	رم	ß	ß	ß	
• •	₽ ⊲		4	4	ß	ß	ß	ഹ	S	ED.	တ	Ω	ល	ß	ĸ	S	υ	ß	co	ß	ស	ເນ	ß	ß	G	ß	ø	ø	ø	•	v	•	
		6.1	7.5	21.1	6.3	17.9	5.3	4.5	1.3	1.7	5.7	6.9	2.8	2.3	8.2	14.3	5.8	6.0	6.0	0. 4	15.4	5.7	18.4	1.5	3.0	7.5	24.5	0.3	8.5	3.0	3.8	2•9	
0 0	N 10	3.1	6.7	24.1	6.5	22.4	3.6	3.8	6.3	5.0	10.8	12.0	3,3	3,3	11.0	15.5	8.3	6.3	3.6	3.7	22.5	5.4	21.3	3.4	5.2	8.0	32.4	3.6	8.1	2.6	3.5	2.9	
, -	1 I) r ₂	7	0	-	7	ы	-10	6	8	-1	9	ų,	4	P.	-5	7	0	-	2	Θ	-1	9	ပု	4	m	<u>ر:</u> 1	7	~	2	'n	4	
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ß	ß	2	ល	
	7 -	12	12	12	12	12	2	13	13	13	13	13	13	13	13	13	13	13	13	13	1 4	14	۲,	1	14	14	1 4	14	0	0	0	0	

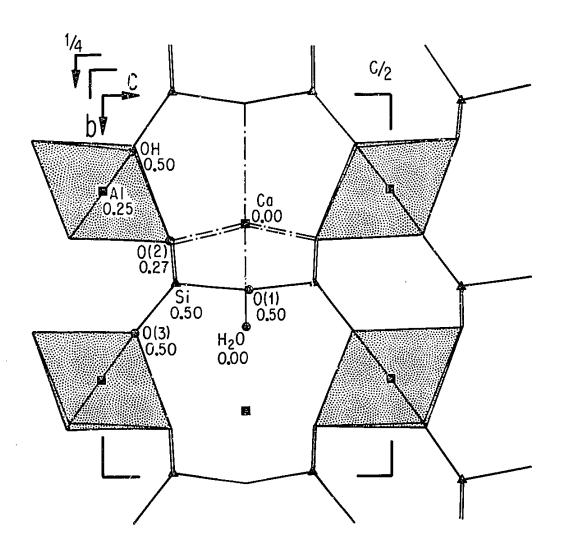
•

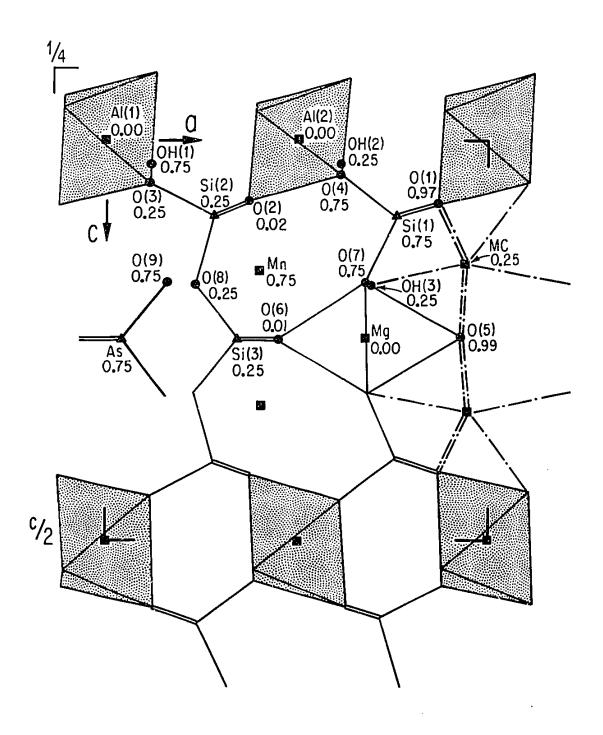
I	¥		£0	FC	I	¥	t FO) FC	I	×	٦	5	FC	I	×	 6	ñ	
4	5 -4		7.8	9.9	ø	٥	0 6.8		2	7		2.1	3.1					
4 (່ ທ່າ			9.0	ø	9	1 8.3	8.1	~	~	0	6.1	1.1				÷	
.				0 1	۰ ن	۰ ب	2 12.1		~ ∙	٠,		6.1						
					۰	۰.	2 6 6 6 6		N) t	- 1	٠	E .	F (
				0	.	o (1000		.	• •		0 0	9 0					
				8.0			2.2		un	- 1								
0				1.2	ø	, v	7 8.6		۰ د	۰ ۲								
٥				6.0	7	9	1 10.7		~	1		9.	6.5					
0				5.1	7	9			2	1		3.5	0.4					
9				3.0	7	9			ю	7		4	4.6					
0				5.4	7	•			m	7		6.9	5.8					
_				6.0	^	9			m	7		10,00	6.5					
_				.3	7				m	2		2.5	0.3					
_				9.	7				8	7		3.2	6.0					
_				€.	7				n	7		2.0	6.0					
_				9-0	^				ю	~		5.0	5.0					
_				6.	1	6 -2			m	7		3.5	3.0					
				0.	~				m	7		10.6	10.7					
				8.	٧				m	7		1.6	0.4					
				r,	_				m	7		4.7	5.5					
				r) ·	~				E	7		2.9	3.2					
				- -	۲.				m	~		2.5	2.0					
				4	~				m	7		3.5	1.7					
_				. 82	~				m	7		7.6	7.5					
				4	-				E)	7		3,3	1.8					
-				n	6 0				m	7		7.9	6-9					
_				•	πĵ				m	7		7.0	3.8					
_				•	8				4	-		2.5	1.9					
_					80				4	7		6.1	4.2					
_				• 1	89				4	7		2.3	2.7					
_				•	e,				∢.	7		9.0	9.5					
_				•	é				4	7		6.1	5.5					
N		•		8,	80	9	3 2.4		4	7		5.6	7.5					
o.				•	80	0	2 4.1		4	7		9.0	8.2					
۵,				9.	۵	9	1 3.4		4	~		2.0	0.2					
۵.				0.	80	۰	0 24.2		4	7		2.0	2.4					
				4.	æ	:	1 2.5		∢.	7		2.7	2.5					
				.,	6	•	3.6		. ◆	7		6.1	1.8					
-				ທຸ	Q	۰	3 4.8		4	7	_	4.2	3.7					
		9	1	.4	8	°	41 20.2		4	,	2	2.2	0.0					

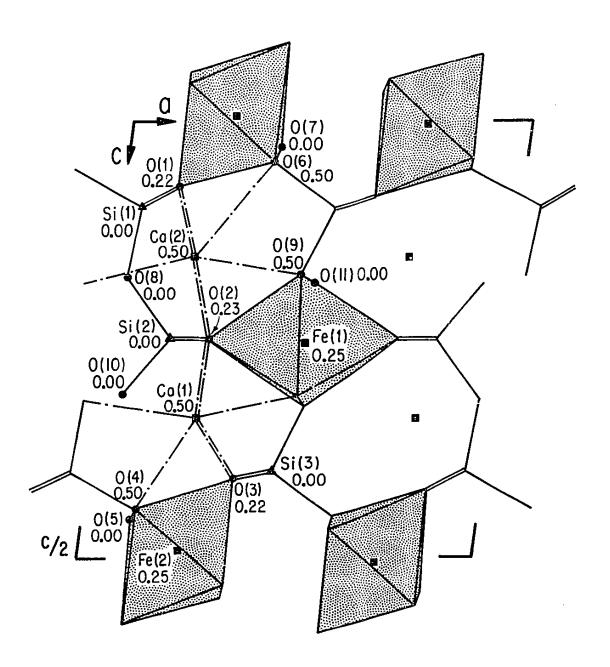
			•							•	3					•			7					7		•																7
			•																																		v			•		
2.7	0 ·		2.1	0.8	5.4	0.4	1.8	6.2	1.0	1.5	0 M	9.0	12.2	0.7	2	M 6	2.5	2.3	1.5	•	0.1	B • B	4.0	0.3	2.0	0.0	.g.∙®	5.8	2.8	1.6	3.0	2.5	11.5	1.2	10-1	0 F	2 0	2.2	2.4	10.0	0.0	8 6
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N 1	0 F	4.8	2.3	5.8	2.5	2.5	2.1	2.1	2.4	3.0	2.5	11.62	2 4	, ,	. N	2.4	0.4	7.7		2.5	2.5	5.6	2.6	• •	2.5	3.2	4.7	e .	•	2.5	2.4	11.4	2°3	100	7	3.2	2.5	2.5	10-2	A .	F - 1
w 4 ≀	ı,	٥ ٢	9	9-	-1	Ŷ	ç	1	۳	7.	7	0		N r	ο.	ŧ w	ø	6	8) i	7	E)	-5	7 (-	N	m	∢ (o <	ò	8	-7	9	ρ.	•	7 7	1-	0		~ 1	Ю
	۱ م		. ~	7	7	7	7	7	7	7	^	_	_	۱ م	- 1	- ~	7	7	.	~ 1	~ ~	٠,	~	7	~ r	- ~	1	7	۱ م		٠,	۲	7	7	١ ٦	٠ ١	- ~	7	7	~	2	7
44.	∢ ,	er «	U 1	5	S.	5	S.	5	ω	ស	ю.	io (6 0 1	ני ט	ט מ	n un	5	ø	•	o v	o •c	•	ø	•	6	9 40	٥	ø	•	9 (7	7	~	- 1	- 1	۰ ۲	7	7	7		7
5.6	4.	8 4 0 4	5	3.0	5.6	4 . 7	6.1	5.8	2.5	5.2	6.7	0.1	* !		7 0 0	1.2	3.9	20.8	1•3	1 * 6	0	6.7	25.3	9.0		0	11.6	5.1	0.7	- C	5.7	4.5	4.6	2.8	M (7 41	9	1.3	16.4	3.0	12.2	3.8
2.0	7.8		, to	5.4	2.5	6.3	11.1	7.1	2.5	9.9	6.1	2.7	2.B	ب و ا	6.07	• 0	0.0	22.5	2.5	14.1	A 10	8	29.5	2.8	ຜູ	2.0	12.4	6.9	B. 3	o v	7.6	8-1	9.9	8	8	1.71		2.7	20.1	4.0	14.8	0.9
-10	0 0	9 1	Ŷ	-5	4	e.	ş	7	0	-	~	m ·	∢ ;	0 0	9 :	9	5	4	m I	N -	7 0	,	Ŋ	m	0 0	-	ø	ග	1	? n	, ,	0	-	N	۲,	0 u	1	6-	Ŋ.	7	0	4
000	v v	ه ه د	•	ø	v	o	ø	o	ø	9	•0	· o	vo v	vo v) v	0	9	9	φ,	٥ ٧	9 40	• •	v	9	9	0	9	φ	v v	o v	φ	9	ø	ď	o v	ه ۵	φ.	9	•	ġ,	۰ ه	• i
ω σ.	0. (თი	. O	0	0.	٥	σ,	0	Φ.	ο.	0	Φ.	Φ ;	2 :	2 :	2 2	01	10	2	2 :	2 5	2 2	10	10	Ξ:	::	=	=	= :	= =	: :	=	=	=	15	2 :	2 2	12	12	12	7	13
1.3	7.8	28.3	7.0	5.0	36.0	8.1	0.0	5.8	14.5	3.2	2.4	1.7	5.3	2.7	7	7.0	8.8	5.3	11.9	₹ (0 0	1.5	2.7	1.7	10.5	0 4	4	3.4	1.4	13.0	17.2	3.2	3.3	6.2	40.3	יי היי	0.0	22.4	7.5	30.6	:	2.7
19.4	9 1	24.7	2.1	4.3	35.0	7.2	9.6	4.7	15.6	7.6	4.5	2.7	8	n c	0 1	7.5	8 . 2	5.5	11.5	6.	7.0	2.5	4.0	2.3	11.7	2.5	6.2	7.3	5.0	0.0	17.7	3.8	4 • 1	ຕູ້	38.4	2 .		18.9	0.0	28.2	5.0	3.0
E 2	7	۰ -	→ ~	m	4	S	٥	7	9	٥	==	-10	6	φ r	7	e G	4	ñ	-5	·	-	- 2	'n	4	s v	۰ ۲	. co	0	-11	2 9	\ C	-	9	5	4 1		٠ - ا ا	0	-	N	Ð	4
00	ø	•	0 <	0	٥	ø	Ø	ø	9	ø	٥	9	٥	•	٥	o c	ø	9	9	9	φ 4	סי כ	ο ο	٥	9	0 (• •	ø	9	•	9 (• •	ø	9	9	v v	٥	ø	ø	9	o	٥
מא	CV	OJ F	V (1 ~	2	~	~	2	C)	2	E)	m	m	וניא	.	יין ניי) Pr)	m	m	ומו	m m	מיו ני	m	IJ	m i	יין ני	m	Ð	∢	∢ •	* 4		•	•	∢ '	•	₹ 4	•	4	4	47	4

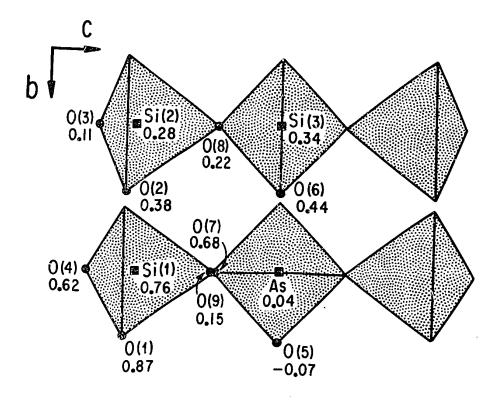
																															٠	
																										-						
•	80 ·	0 6	7 6	7.5	. 6.0	2.5	6.2	2.8	5.4	2 · 8	3.2	4.9	1.5	0.9	0.1	1.2	3.2	1:1	7.4	2.7	1.6	0.2	2•5	1.7	4.0	6.3	4.2	2.8	0.3	2.5	5.9	6.0
0.1	0 4	7 4 6 0	0 6	4	2.3	3.1	5.8	4.0	2.3	4.5	4.0	4.8	2.5	6.4	2.4	2.4	2.4	2.3	0.6	2.3	2 • 9	3.4	4.1	2.4	3.1	5.4	2.4	2.4	2.4	2.4	6.4	2.4
ດເ	, c	D P	- 12	, in	4	.	-5	- ,	0	-	~	m	4	8	-1	9	ņ	4	m	-5	7	0	-	2	-1	9	ş	4	Ę,	2-	7	0
- 1	- 1	٠.	- 1	- ^	. ~	7		7	1	٧	7	7	_	۲	7	7	۲	7	~	7	7	-	7	7	۴-	7	^	7	7	^	_	7
-	co	co (.	ο α	, α	60	60	80	80	80	80	60	æ	Φ.	0.	O.	0	0,	٥	٥	٥	Φ.	٥	٥	2	2	20	2	01	9	10	2
י ני י ני	2 .	٠,	•		3.5	0.4	e*0	0.8	7.6	1.9	15.4	0.1	17.4	3.5	7.2	0.2	4 - 1	3.5	9.1	4.0	5.9	0.1	5.9	0.5	0.0	9.9	3.1	3.1	2.1	2.7	9.0	2.7
2		2.5	, r		4	2.5	2.4	2•3	0.8	2.2	15.3	2.0	16.7	2.3	5.7	8 • 1	2.4	3.2	9.6	4-1	6.2	2 • 2	5.4	2.4	2.4	7.8	5.9	4 • 2	3.0	2 - 1	2.0	2.5
~	η.	∢ 1	o v	۸ ۵	· æ	0.	6-	9-	-1	9-	÷5	4-	۳	2-	-	0	-	N	m	4	S	9	7	60	6	8-	-7	٥	9-	4	m.	2-
_	- 1	٠,	- 1	٠,	. ~	7	۲	7	~	۲	7	7	-	7	7	7	7	7	7	1	7	2	٢	7	۲-	7	7	7	-	-	7	7
0 (э (0 0	-		0	0	-	-	-	-		-	-	-		-	-		-	-	-				N	N	~	æ	~	N	N	N
16.4	9.0	12.8	, . , .	10	0 0	13.9	8.7	4.8	3.2	G * E	4.8	9.1	9.01	7.6	6•9	9.0	0.0	4.7	11.0	5.7	3.4	3.1	9-6	0.2	16.7	10.9	12.7	7.8	10-0	2.5	32.4	6.8
17.6	5.1	14.6	3 I	, u	3,3	15.3	6.8	4.1	4.0	2.9	4.1	8.9	10.1	10.1	4.7	2•3	2.4	6.9	11.8	8.0	5.2	. 5.8	11.9	2.7	18.8	10.9	12.4	7.4.7	0.6	2.3	31.5	6.1
o ۱	٠,	œ ;	•	20	. 89	-1	ģ	ę	4-	۳	7	-1	0	-	71		4	S	ø	_	9	.11	10	o 1	8	-1	9	ហួ	4	- 3	7-5	7-
•	۰ م	۰ م	0 4	, o (0	٥	9	9	ø	9	ø	٥	9	9	ø	9	9	ø	ø	٥	9	0	9	ø	9	9	ø	9	ø	ø	9	9
4	4	4 (n u	ט נו	າເດ	ď	K)	ល	£	ß	Ω	D.	2	S	S	9	ιΩ	S	2	5	ı,	9	٥	9	9	9	9	ø	ø	9	ø	9

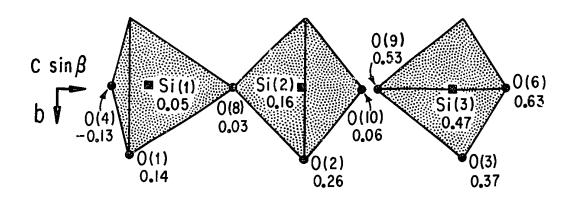
	FO																													
	_																													
	¥																													
	I																													
	FC	3.0	17.2	2.1	0 . 8	5.0	10.2	2.4	10.0	B • B	2.5	6.3	16.7	1.0	3.2	2-1	2.8	3.9	5.5	0.4	5.2	2•3	1.1	0.5	4.7	5.9	3.9	1.9	0.6	
PART	fO	3.6	20.2	2.1	2•0	4.2	11.5	2.6	10.7	1.8	2.3	0.9	20.4	2.6	9 ° E	2.1	3.5	4 - 1	8.6	5.1	5.0	2.5	2.0	2•6	5.4	8•2	4.2	2 • 3	11.2	
4	ب	r-	ø	ιç	4	ņ	2	7	0	-	N	m	4	ß	8	~	٥	ı,	7	ņ	7	7	0	-	~	٣	4	~	Ģ	
• 0	¥	0	0	80	æ	8	80	æ	æ	8	æ	0	80	æ	æ	8	80	æ	80	Ø	8	8	8	8	80	Ø	8	8	8	
SHEET N	I	4	4	4	4	4	4	4	4	•	4	*	4	4	ĸ	S	ß	ช	ស	ญ	ဖ	ល	တ	ß	9	ល	Ω.	o	φ	
	FC	2.7	14.3	6.9	10.2	2.5	7.7	2.0	17.7	3.4	2.3	1.0	0.0	4.1	5•3	3.2	3.2	1.0	3,9	4.9	2.9	4.4	2.1	9.2	5.2	4.9	0.5	1.9	7.7	
	F.O.	2.0	15.7	7.0	10.0	2.0	9.9	1. 8	19.3	3.3	2.1	3.6	11.0	2.2	8.3	3.8	3.9	1.8	4.1	1.8	3.2	4 • 2	2.8	0.6	5-1	6.2	2.3	2-1	10.6	
	٦	ų,	4	m	-5	7	0	-	2	m	4	വ	٥	8	- 7	9	S.	4	m I	2	7	0	-	N	'n	4	ß	ø	8-	
	¥	8	8	Ø	8	න	89	6 0	8	60	80	80	B	60	в	8	8	60	8	8	æ	Φ	80	٠;.	T)	œ	8	Ф	8	
	I	2	~1	61	2	2	2	N	~	2	N	N	8	n	m	IO.	E	m	M	n	m	m	m	Ð	m	m	e	m	◂	
	FC	1.7	1.7	2.7	3.7	1.4	1.7	5.3	5.2	10.4	D.	11.6	1 - 1	0.0	1.0	0.3	1 • 4	8.6	4.4	1.5	0.5	3.8	6.9	3.5	6.2	4.2	2.9	3.2	3.5	4.6
WACFALLITE	FO	2.5	2.5	2•2	2.5	3,3	1.0	4.3	5.0	10.7	4 - 1	13.3	2.5	2 • 1	2.1	2.0	1.8	0.0	5.1	1.7	1.8	2.6	5.5	9 • 0	9.9	9•9	2.0	3.4	5.3	4•0
MAC	ر	-	ကူ	4	E.	-2	-	7	ы	4	ເດ	9	£	-1	9	<u>.</u>	4	6	7-	7	0	-	7	IL)	4	φ	ø	7	-1	q
	¥	7	1	7	~	7	æ	89	8	89	80	8	80	8	æ	4 0	0	8	8	80	8	89	8	8	80	8	8	8	0	8
	I	0	_	_	_	_	0	0	0	0			0	_	_	_	_	-	_	_	_		_	_	_	_	_	_	N.	O.I


FC


50																											
١									•																		
¥																											
I																											
FC	3.0	2.8	0.8	0.1	0.9	1.1	11.1	0.3	7.9	1.4	2.1	0.8	3.6	3.0	1.2	2.3	1.3	1.1	0.4	3.3	1.5	0.0	2.4	0.4	4.1	2.0	0
FO	4.4	2.7	1.8	1.8	6.5	1.7	12.3	1.7	8.4	1.7	1.9	3.1	4.6	5.2	1.7	2.5	2.3	1.7	1.8	3.3	1.8	2 • 5	3,3	1.8	0.0	1.8	1.8
_	m	4	ព្	1	P)	7	7	0	-	N	m	5	1	ņ	7	7	0	-	2	4	ņ	-5	7	0	-	E.	2
¥	٥	٥	0	٥	٥	o	0	0	O,	ø	G	0.	O.	o	ō	O.	0	o	0	0	Ø.	Ġ	O.	o	0	0	٥
I	~	2	n	m	m	ľ	r)	m	ŀΩ	rŋ	m	4	4	4	4	4	4	4	*	ល	ĸ	S	Ю	ល	ß	ø	v
FC	3.8	2.6	1.9	3.1	2.0	4.2	1.3	2 - 1	1.3	0.1	2.6	0.2	4.7	1.07	1.8	0.1	1.0	1.7	2.6	2-4	1.3	1.2	1.9	1.1	0.0	0.7	1.9
F0	5.8	1.4	4.3	2.6	2.7	1.9	1.6	1.9	1.8	2.0	3.1	2.7	5.9	1.8	1.3	1.1	1.4	1.9	3.0	3.6	3.2	1.7	3.0	1.7	1.7	1.7	2.4
Ļ	-5	4	Į.	4	7	-	2	m	4	ß	-5	4	m	7	7	0	-	N	m	4	1	4	Ð	7	7	0	-
¥	8	80	80	8	8	O,	O.	ø	٥	0	0	o.	٥,	ø	0	0	ø	0	0	Q,	٥	٥	٥	Ō,	0	٥	O.
I	٥	O.	o,	0	o,	٥	0	0	0	0			-	-	-		-		-	-	Ŋ	~	N	N	N	2	~
FC	2.1	14.4	3.6	1.1	2.5	17.6	1.4	8.9	4.4	5.6	2.5	2.7	1.9	3.3	6.3	6.2	1.5	3.0	1.8	2.8	7.1	1.1	8.3	5.2	14.5	1:1	5.0
FO	2.1	16.7	4.7	2.0	3.8	19.8	2.0	10.0	4.0	9.9	4.6	5.4	2.0	3.0	7.9	7.3	2.7	2.8	4 - 1	2.1	7.8	2.1	10.0	5.3	16.4	2.0	5.8
ب	ç	4	E.	Ŋ	7	0	-	23	Ю	4	-1	9	<u>ن</u>	4	- 3	-2	7	0	-	સ	9	-5	4-	E.	75	7	0
×	8	80	8	8	8	8	8	8	8	8	8	8	8	B	8	8	80	8	Ð	8	80	8	8	80	æ	8	80
I	٥	9	ø	0	۰	ø	9	ø	v	ø	7	7	7	7	7	7	7	7	7	7	89	8	89	80	89	0	8


A.


SHEET NO.


MACFALLITE

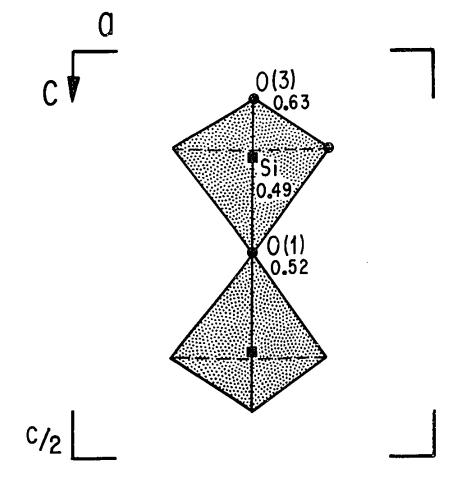


Table 6a.	Ruizite:	anisotropic	thermal	vibration	parameters.†
	***********	mittage of object	VIAC I IIIQ I	AIDIGCION	pulance ceta.

 Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	8.4(4)	0.1(4)	7.5(4)	0.8(3)	2.5(3)	0.0(3)
Ca	15.7(6)	6.0(5)	10.9(6)	0	2.8(5)	0
Si(1)	7.5(7)	1.9(7)	8.1(7)	0	1.0(6)	0
0(1)	13.9(15)	2.6(13)	12.2(15)	-2.7(11)	5.1(12)	-2.5(11)
0(2)	14.1(21)	3.4(18)	10.1(20)	0	0.2(17)	0
0(3)	17.3(23)	6.9(20)	6.2(19)	0	3.7(17)	0
Si(2) 0(4) 0(5)	10.8(8) 67.3(36) 19.4(42)	12.3(9) 17.3(22) 119.7(65)	8.1(8) 33.9(26) 17.2(41)	0 -26.3(24)	0.8(6) -31.1(25) 7.8(36)	0 15.4(20) 0
0(6)	8.3(19)	4.0(18)	12.1(20)	0	1.4(16)	0
0(7)	17.0(26)	22.0(30)	33.2(33)	0	5.7(24)	0

[†]Coefficients in the expression $\exp-[U_{11}h^2 + U_{22}k^2 + U_{33}k^2 + 2U_{12}hk + 2U_{13}hk + 2U_{23}kk]$. Estimated standard errors refer to the last digit. The coefficients are each ×10³.

Table 6t	o. MacFal	<u>lite: ani</u>	sotropic	thermal v	ibration pa	rameters.†	
 Atom	U ₁₁	U ₂₂	Uaa	U ₁₂	U ₁₃	U ₂₃	
Mn(1) Mn(2) Mn(3)	3.7(3) 5.2(3) 5.3(3)	17.8(6) 23.3(5) 21.2(5)	4.6(4) 5.9(3) 6.1(3)	0.0(4) -0.2(4) -0.2(4)	1.0(3) 1.7(2) 1.6(2)	-0.1(4) 0.4(4) 0.1(4)	
Ca(1) Ca(2)	6.4(4) 6.0(4)	23.6(7) 26.5(8)	9.9(5) 8.6(5)	0 0	3.1(4) 1.5(4)	0 0	
Si(1) 0(1) 0(2) 0(6)	3.1(5) 3.0(11) 3.7(13) 3.7(8)	20.5(10) 22.1(25) 36.6(40) 23.0(21)	4.0(6) 5.5(16) 4.3(15) 6.5(10)	0 0 0 0.5(10)	1.0(4) 1.3(11) 1.7(12) 1.2(8)	0 0 0 -0.9(12)	
Si(2) 0(3) 0(4) 0(7)	3.6(5) 4.1(12) 3.4(11) 4.4(8)	18.3(9) 26.7(29) 24.9(27) 22.9(21)	4.5(6) 4.2(14) 4.2(14) 5.7(10)	0 0 0 0.0(11)	1.5(4) 2.0(11) 0.7(10) 1.6(8)	0 0 0 -0.8(12)	
Si(3) 0(5) 0(8)	4.2(5) 2.6(11) 4.9(7)	18.6(9) 22.0(24) 20.6(16)	4.4(6) 6.0(16) 5.4(9)	0 0 -0.9(12)	1.9(4) 1.1(11) 2.1(7)	0 0 -0.9(12)	
OH(1) OH(2) OH(3)	5.6(14) 4.2(13) 4.7(14)	21.9(25) 23.8(27) 30.2(34)	5.1(15) 4.1(14) 3.6(15)	0 0 0	2.4(12) 0.5(11) -0.3(12)	0 0 0	

†Coefficients in the expression $\exp-[U_{11}h^2 + U_{22}k^2 + U_{33}l^2 + 2U_{12}hk + 2U_{13}hl + 2U_{23}kl]$. Estimated standard errors refer to the last digit. The coefficients are each $\times 10^3$.

Table 6c. Orientite: anisotropic thermal vibration p	l parameters.	S .
--	---------------	-----

Atom	Uıı	U ₂₂	Uзз	U ₁₂	U ₁₃	Ü _{2 3}
Mn(1)	30.0(17)	5.5(3)	53.5(34)	0.1(7)	-0.0(25)	-0.4(8)
Mn(2) Ca	138.6(99) 87.1(38)	19.1(16) 5.3(5)	230.8(157) 71.3(51)	0 1.7(10)	13.5(110) 0	0
Si(1) 0(3) 0(4)	93.4(97) 83.5(142) 52.0(104)	10.4(12) 4.2(16) 6.3(16)	145.0(139) 83.5(199) 107.7(218)	0 3.4(37) 0	0 0 -0.5(130)	0 0 0
Si(2) 0(1) 0(2)	37.3(41) 32.7(69) 33.3(104)	4.3(6) 7.6(12) 10.4(20)	60.5(69) 88.6(142) 68.1(185)	0.6(11) 1.8(21) 0.4(34)	0 6.6(76) 0	0 -2.1(30) 0
0(5) 0(6)	37.4(111) 127.7(207)	7.8(19) 14.5(27)	95.0(197) 210.0(346)	-0.6(35) -6.1(61)	0	0

[†]Coefficients in the expression $\exp-[U_{11}h^2+U_{22}k^2+U_{33}\ell^2+2U_{12}hk+2U_{13}h\ell+2U_{23}k\ell]$. Estimated standard errors refer to the last digit. The coefficients are each ×10⁴.

obsi	ERVE	D AND	CALCU	LATED:	STR	เบตา	TURE	FACTORS	FOR	R	UIZ	ITE I	DATA F	RED	11/	6/8	12						PAG	E 1	
H F	< L	FO	FC	Н	K	L	FO	FC	Н	K	L	FO	FC		Н	Κ	L	FO	FC	н	κ	L	FO	FC	
2 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		75 45 37 59 12	-73 51 -39 64 -1£ -18	H	K 4455555566666677777886889999ØØØØØ		FO 144 155 677 211 233 316 8 688 483 324 483 226 33 324 238 128 128 128 336 336 336 336 336 336 336 336 336 33	-9 -14 528 -27 32 -46 59 -29 -27 -27 -25 -25 189 -23 33 -25	H Ø 2 4 5 8 8 8 2 4 1 3 1 1 9 7 5 3 1 1 3 5 7 9 1 1 3 4 2 8 2 4 1 1 1 1 2 8 6 4 2 8 2 4	K \$8\$\$\$\$\$\$11111111111111222222222	111111111111111111111111111111111111111	93 1252 7766 45 1252 1252 1252 1252 1252 1252 1252 1	F 95554722 867836564774732 2 8678365647-43985647474317 226144741173	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	12243119753113579132886428246882	K 22233333333333333444444444444455	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FO 79 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20	FC 29 -59 18 13 2 2 -153 93 9-50 7 -21 4 8 2 4 -22 2 -35 2 4 6 3 7 8 3 6 6 3 6 6 1 -7 2 8 -22 14	H 31135791886428246889753113579864	K 555555556666666666667777777777888	111111111111111111111111111111111111111	FO 7311 187 1231 137 1231 137 1231 137 1231 137 1231 137 1231 137 137 137 137 137 137 137 137 137 1	FC 66 63	
6 4 8 4	ø	35 44	-34 44	-4 -2	Ø	1	44 27	-39 34	6 8	2	1	15 32	15 -32		7	5	1	13	5 19	-2 Ø	8	i 1	12 49	-12 43	

5.0

5.51

ОВ	SER	VED	AND	CALCU	LATEDO	STR	UCT	URE F	ACTORS	FOR	R	UIZ	ITE I	ATA R	ED 11/	6/8	12						PAG	E 3	
н	к	L	FO	: FC	н	K	L	FO	FC	н	ĸ	L	FO	FC	н	κ	L	FO	FC	н	κ	L	FO	FC	
-11 -12 -14 -3 -3 -11 -13 -5 -3 -11 -13 -5 -5 -3 -11 -13 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	. თუუუუუუუუუუუფ44444444444455555555		5 # 18		7 91 11 -18 -6 -4 -2 8 2 4 6 8 8 1 9 7 -5	555666666666666666666666666666666666666		9 22 9 36 15 23 11 15 23 44 42 21 17 17 17 17 12 12 12 13 14 15 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	-7 23 -61 31 -11 18 -18 -18 -18 -18 -18 -18 -18 -18	-11 1 3 -12 -12 4 6 6 8 18 8 12 4 -13 -7 -5 3 -11 13 3 5 7 9 1 13 4 -12 -18	999888888888888888888888888888888888888	333444444444444444444444444444444444444	19 55 15 8 27 31 10 11 11 12 12 11 11 14 16 11 11 14 14 14 14 14 14 14 14 14 14 14	166 -53 3 8 277 -34 -25 1688 -169 1158 -38 21 155 36 -19 31 -12 73 157 -37 37 37 37 37 36 34 54 55 36 34 54 54 54 54 54 54 54 54 54 54 54 54 54	-86-428244688224468822446882244688224	22222222222222222222222222222222222222	4444444444444444444444444	68 94 86 48 822 48 86 18 57 18 8 13 31 12 2 7 5 5 5 2 4 4 3 4 3 4 3 4 3 4 3 4 3 4 4 1 1 3 3 3 4 4 1 1 1 3 4 1 1 3 1 3	-66 -82 -15 -15 -16 -13 -32 -11 -13 -39 -39 -39 -4 -24 -24 -24 -24 -24 -24 -24 -24 -24	688211975311357918864282468897753113	4444555555555555566666666667777777	444444444444444444444444444444444444444	343 92 23 55 244 285 276 277 266 277 278 278 278 278 278 278 278	-34 23 38 28 -13 -13 -13 -13 -13 -13 -24 -13 -24 -13 -24 -13 -24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	· · · · · · · · · · · · · · · · · · ·

Ľ

FO FC

OBSERVED AND CALCULATEDOSTRUCTURE FACTORS FOR RUIZITE DATA RED 11/6/82

_			AND FO	CALCUI FC				FACTO	RS FOR				ATA R	ED 11/	'6/8 K				н	ĸ		PAG		
H 88213997-531-1357911313-442811297-531-135791132-468812297-531	2223333333333	L 666666666666666666666666666666666666	35161542256417327927728333444663441228	- 3 2 2 6 5 3 2 6 5 5 2 6 5 5 2 6 5 5 2 6 5 5 2 6 5 5 2 6 5 6 5	H 1357911864282468975311357964282463	K 555555666666666677777777778888888889	666666666666666666666666666666666666666	FC 912442884288738444 -4128813886 -66131132228887388 -441288737311322735881 -412887379933811 -4127951922	-11 38-64-22 46-64-28 22-46-68-64-112-75-31-11337-1132-1148-132-138-128-132-138-128-132-148-128-132-148-128-132-148-128-132-148-128-138-138-138-138-138-138-138-138-138-13	K 9995 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L 6666777777777777777777777777777777777	FO 15 53 45 63 46 63 46 63 46 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	17 -1 11 -48 -68 -119 -119 -119 -127 -18 -14 -27 -18 -14 -27 -18 -14 -27 -18 -14 -27 -17 -14 -23 -23 -3 -4 -18 -112 -112 -112 -112 -112 -112 -112	2468 182 113119-753-113579 11286-42824688821117	. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	t 777777777777777777777777777777777777	96 52 84 32 84 37 12 26 77 35 5 5 5 27 73 4 6 9 12 3 3 2 4 11 8 19 1 5 \$	FC 1883 -344 -868 -169 -288 -169 -15 188 11 623 -74 7 7 3 -124 -17 18 223 -25 -127 16 148	-3 -1 1 3 5 7 9 11 -1 0 8 8 1 8 7 -2 2 4 6 6 8 1 7 -5 3 -1 1 3 5 7 -6 4 4 2 8 2 2 4	. 555555555666666666666777777777888888	L 777777777777777777777777777777777777	FO 988444445563888378659225883744 B 8 4 4 5 5 5 4 6 3 6 3 5 6 3 6 3 6 6 3 6 6 3 6 6 3 6 6 3 6 6 6 3 6	FC 61-17-13-13-13-13-13-13-13-13-13-13-13-13-13-	

7----

OBSERVED	AND	CALCU	LATED!	STR	UCT	URE F	ACTORS	FOR	R	U I Z	ZITE (DATA R	ED 11/	/6/8	32 -						PAG	GE 6	r
нкг	FO	FC	Н	K	L	FO	FC	Н	K	L	FO	FC	н	K	L	FO	FC	н	ĸ	L	FO	FC	:
6 8 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8	17 18 26 28 25 30 42 25 30 42 25 30 40 25 30 40 26 48 48 48 48 48 48 48 48 48 48 48 48 48		-644-2824-68818321-199-75-33-112-188-44-28824	222222222333333333334444444444444444444	888888888888888888888888888888888888888	43 9774 21373 2459 4155 429 2 33 428 72 7 8 642 9 45 9 37	42 -12 -32 -42 -42 -24 -24 -24 -24 -24 -22 -22 -2	-119-75-31-13579988-4-2824-687-531-1357-64	555555555566666666667777777788	***************************************	8 22 22 43 3 44 22 43 3 44 22 5 5 5 5 5 48 8 6 16 6 17 5 14 21 4 21 4 21 4	-2 22 22 -26 44 4-15 -33 -34 -16 -55 -48 -29 13 -36 -15 -36 -37 -4 -15 -37 -4 -15 -37 -37 -37 -37 -37 -37 -37 -37 -37 -37	461-1288-4-688-4-6-6-4-288-2-4-6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	889 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88899999999999999999999999999	254818131124918866936279365554938728	2972455981317377443977266834438572668344385726683443857266834438572623	2 2 4 6 8 8 2 1 1 9 7 5 3 1 1 3 5 7 9 1 1 8 8 5 4 2 8 2 4 6 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N22222233333333333444444444444444444444	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	234 6 8 5 1 2 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	2182865965768778444888528581728555	
-12 2 8 -10 2 8 -8 2 8	1Ø 71 67	-1Ø 72 -66	6 8 1Ø	4 4 4	8 8 8	45 25 22	-5ø 27 -22	-2 2	8 8	8	23 42 49	-17 48 -55	-8 -6 -4	2 2 2	9	39 91 52	-43 91 -5ø	18 -9 -7	4 5 5	9 9 9	54 32 7	-53 32 -1	

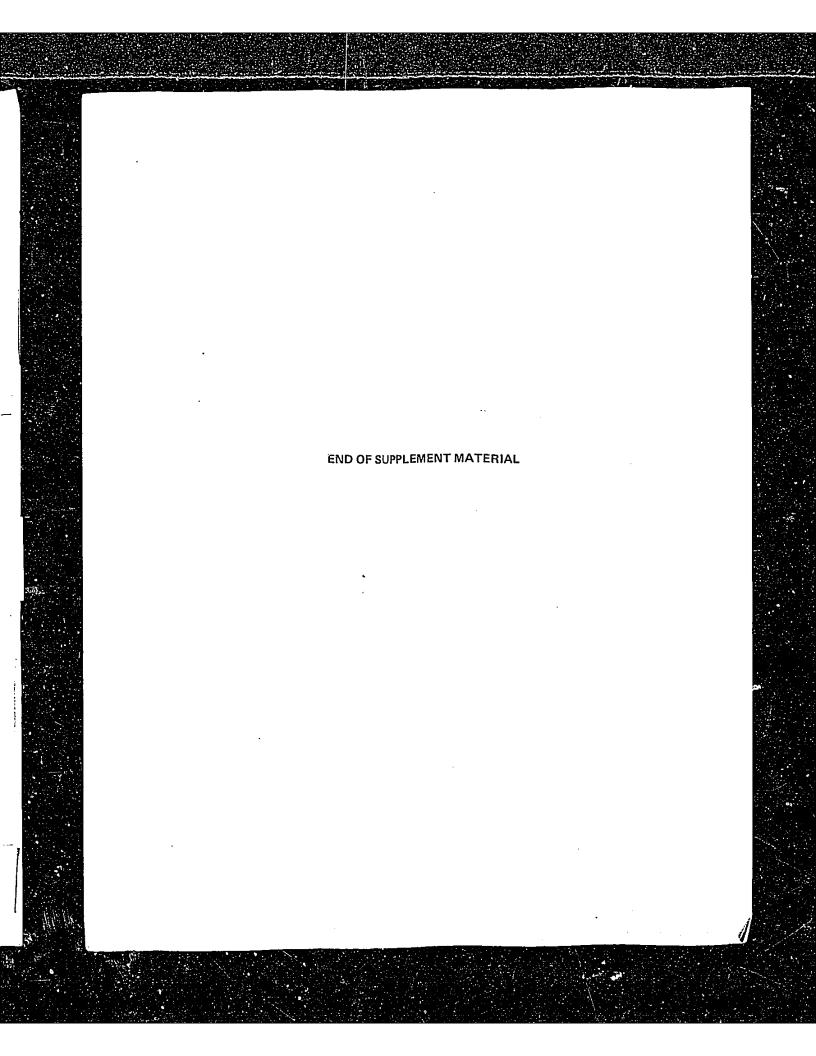
ORSERVE	D AND CALC	II ATED. OT	BUCTUBE I	CACTORE F	. n											
		2 EW 1 E D (2 L)	KULTUKE I	FACIUKS FU	JK F	RUIZIT	E DATA R	ED 11/6	5/82					PAG	E 7	
нкг	FO FC	н к	L FO	FC	H K	L I	FO FC	Н	K L	FO	FC	Н	K L	FO	FC	t
99999999999999999999999999999999999999	26 -25 13 -18 48 -54 10 4 9 -2 37 -38 67 65 35 -35 35 -35 77 -86 42 -45 28 -30 6 -2 28 -30 6 -2 28 -30 12	4 6 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 2 2 2 2	10 86 10 89 10 10 10 10 5 10 37 10 9 10 22 10 25 10 7	-2 -26 -44 -25 I 38 -166 -466 -33 2 -18 37 37 35 -167 -59 -17 -67 -91 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 0 8 6 4 2 0 2 4 6 8 0 9 7 5 3 1 1 3 6 7 9 8 5 4 2 7	18 118 118 118 118 118 118 118 118 118	-9 4 -9 35 7 -14 8 -46 7 -25 6 -36 6 -36 13 1 -12 6 -36 1 -12 6 -36 6 -13 1 -12 6 -36 6 -13 7 -14 8 -36 6 -36 6 -36 7 -36 8 -36	-75-31-135-428-228-228-228-228-228-228-24-88-88-88-88-88-88-88-88-88-88-88-88-88	īīī	17 15 15 14 28 7 84 85 19 11 28 8 6 11 28 8 6 12 8 8 8 6 12 8 8 8 8 8 9 6 12 8 13 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-22 -5 -86 -69 -51 21 -62 56 11	-6 -4 -2 2 4	1 11 1 11 1 11 1 11 1 11 2 11 2 2 11 2 3 11 2 3 11 3 3 11 3 3 11 4 11 4 11 4 11 4 11	71 59 48 28	8 453 -111 148 8 2 2 2 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1	

· 6

: (

ORSERVED AND CALCIN	LATEDISTRUCTURE FACTORS	S FOR	RUIZITE D	ATA RED 11	1/6/82 1			FAGE 8	
H K L FO FC	H K L FO FC		K L FO		H K L	FO FC	нкь	FO FC	
18 4 11 6 -5 9 5 11 28 -23 -7 5 11 18 -1 -5 5 11 28 -22 -3 5 11 5 -1 -1 5 11 13 12 -1 5 11 13 12 -1 5 11 13 12 -1 5 11 13 12 -1 5 11 13 12 -1 5 11 13 12 -1 5 11 25 11 -1 5 11 25 11 -1 5 11 25 11 -1 5 11 25 11 -1 5 11 25 11 -1 5 11 25 11 -1 7 5 11 25 11 -1 6 6 11 25 19 -1 6 6 11 18 -28 -1 6 6 11 25 19 -1 6 6 11 25 19 -1 6 6 11 25 19 -1 7 11 18 -19 -1 7 11 19 -18 -1 7 11 19 -18 -1 7 11 19 -18 -1 7 11 19 -18 -1 7 11 19 -18 -1 7 11 19 -18 -1 7 11 12 -9 -2 8 11 29 38 -3 8 11 29 38 -1 8 31 29 -23 -8 8 11 29 38 -1 8 31 29 -23 -8 8 11 29 38 -1 8 31 29 -23 -8 8 11 29 38 -1 8 31 29 -23 -8 8 11 29 38 -1 8 3 12 21 -23 -8 8 12 21 -23 -8 8 12 21 -23 -8 8 12 21 -23 -8 8 12 21 -23 -8 8 12 24 44 -8 8 12 85 -1 82	6	7998-1-188-1-198-1	3 12 18 3 12 5 4 12 27 4 12 22 4 12 71 4 12 21 4 12 15 5 12 15 5 12 22 4 12 21 5 12 22 6 12 15 6 12 25 6 12 27 7 12 28 6 12 15 6 12 27 7 12 28 6 12 15 7 12 28 8 12 27 8 12 27 8 12 27 9 12 28 9 12 27 9 12 28 9 13 37 9 13 37	-70		22 -21 23	7 3 13 -8 4 13 -6 4 13 -2 4 13 2 4 13 2 4 13 2 4 13 2 4 13 5 5 13 -1 5 13 5 5 13 5 5 13 5 5 13 -2 6 13 2 6 13 2 6 13 2 6 13 2 7 7 13 3 8 6 13 -2 6 13 -3 7 7 13 -3 7 13 -4 8 8 14 -8 8 14	8 8 12 1# 19 -19 21 19 11 9 29 31 17 -17 37 36 45 -43 41 38 23 -22 17 17 12 11 43 44 15 -11 5 -5 15 -5 27 25 33 -37 36 63 20 -21 34 34 22 -23 17 14 8 7 19 15 19 -29 45 49 45 49 45 49 45 49 45 16 17 27 24	,是是我的情况,我们也是不是一个一个人,我们也是一个一个一样,也是我们的一个人,也不是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个

OBSERVED AND CALCUI	LATED STRUCTURE FACTOR	S FOR RUIZITE DATA RED 11/6/82	. PAGE 9	
H K L FO FC	H K L FO FC	HKL FOFC HK	L FO FC H K L FO FC ;	٠
4 Ø 14 21 23	Ø 4 14 16 15	-6 2 15 11 11 -2 Ø 1 -4 2 15 8 -9 Ø Ø 1		
6 Ø 14 15 -15 8 Ø 14 8 7	2 4 14 13 14 4 4 14 21 22	-2 2 15 14 14 2 Ø 1	6 83 -81 -4 Ø 17 6 -2	
-9 1 14 11 -8	6 4 14 16 -14 -7 5 14 23 23	g 2 15 18 -2g 4 g 1 2 2 15 21 21 6 g 1	6 31 -29 Ø Ø 17 7 -6	
-7 1 14 25 24 -5 1 14 5Ø 6Ø	-5 5 14 48 49	4 2 15 36 -33 -5 1 1		٠
-3 1 14 7 -6 -1 1 14 19 28	-3 5 14 15 -11 -1 5 14 9 13	6 2 15 10 7 -3 1 1 8 2 15 51 -46 -1 1 1	6 31 -32 6 8 17 14 -14	
1 1 1 4 8 3	1 5 14 8 8	-7 3 15 26 28 1 1 1 -5 3 15 5 -5 3 1 1		
3 1 14 29 27 5 1 14 18 16	3 5 14 23 23 5 5 14 7 2	-3 3 15 13 1 5 1 1	6 18 -15 -3 1 17 25 -24	
7 1 14 19 -17	-4 6 14 8 8 -2 6 14 44 46	-1 3 15 10 4 7 1 1 1 3 15 16 -14 -6 2 1	6 36 34 1 1 17 8 8	•
9 1 14 6 4 -6 2 14 34 33	Ø 6 14 34 -34	3 3 15 18 19 -4 2 1	6 18 -17 3 1 17 5 -3	
-4 2 14 24 23 -2 2 14 60 61	2 6 14 42 45 4 6 14 23 -19	5 3 15 47 -43 -2 2 1 7 3 15 15 -14 Ø 2 1	6 49 -50 -6 2 17 34 36 .	
Ø 2 14 39 -4Ø	-8 Ø 15 43 42	-6 4 15 27 -27 2 2 1		,
2 2 14 48 48 4 2 14 14 -12	-6 Ø 15 3Ø -3Ø -4 Ø 15 29 32	-2 4 15 47 -5ø 6 2 1	6 17 14 Ø 2 17 57 -56 b	;
6 2 14 44 41	-2 Ø 15 58 -6Ø	g 4 15 54 53 -7 3 1 2 4 15 32 -31 -3 3 1	6 29 26 4 2 17 8 -6	
8 2 14 51 -47 -9 3 14 6 -3	2 Ø 15 37 -34	4 4 15 6 6 -1 3 1	6 39 -41 -5 3 17 18 18	
-7 3 14 15 16 -5 3 14 51 51	6 Ø 15 34 -32 8 Ø 15 9 -9	6 4 15 31 -30 1 3 1 -5 5 15 9 -4 3 3 1	6 19 -18 -1 3 17 30 -30	
-3 3 14 7 Ø	-9 1 15 6 -4	-3 5 15 7 -11 5 3 1		
-1 3 14 22 22 1 3 14 5 -3	-7 1 15 36 36 -5 1 15 11 -8	1 5 15 12 4 -4 4 1	6 16 15 -2 4 17 21 -16	
3 3 14 18 18	-3 1 15 1Ø -8 -1 1 15 13 4	5 5 15 38 -36 -2 4 1 -2 6 15 12 11 Ø 4 1	6 11 10 2 4 17 21 -20 .	
5 3 14 28 26 7 3 14 26 -22	1 1 15 10 -3	Ø 5 15 12 -13 2 4 1		
-8 4 14, 40 44 -6 4 14 11 -9	3 1 15 9 8 5 1 15 51 -46	-8 Ø 16 12 1Ø -3 5 1	6 13 13 2 8 18 22 -21	
-4 4 14 71 71	7 1 15 17 -16	-6 Ø 16 15 -15 -1 5 1		•
-2 A 1A 16 -15	-8 2 15 18 -18	-4 Ø 16 15 14 1 5 1		


Caralla de Santa de C

01	BSE	RVED	AND	CALCUL	ATEDO	STI	RUCTI	URE F	ACTORS	FOR	١	RUI	ZITE	DATA RE	D 11/	6/	82						PAG	E 1Ø
Н	K	L	FO	FC	н	K	L	FO	FC	Н	K	L	. F0	FC	н	K	L	FO	FC	н	K	L	FO	FC
1	1	18 18	14 13	24 -1ø 5 :-23	Ø	2	18	15	-16	-3	3	18	3 18	-38 -16 19	-2	ø	19	35	-32	-1	1	19	1.0	-8

Find

- Rumanova and Skipetrova (1959). In this figure and in the Figure 5 series, the octahedra M are stippled and the tetrahedral T-O bonds are drawn as spokes. Some Ca-O bonds, mostly [7]Ca, are drawn as dot-dash spokes. Some symmetry elements are shown. Heights are given as fractional coordinates with respect to the 60Å axis. These diagrams exploit the projection featured in Figure 24.
- Fig. 5b. Representation of the ardennite structure down [010]. The coordinates are from Donnay and Allmann (1968).
- Fig. 5d. Representation of the julgoldite structure from Allmann and Donnay (1973) down [010]. Pumpellyite is isostructural to julgoldite.
 - 6b. Tetrahedral interlayer link in ardenrite down [100]. The [Si_3O_{10}] unit can be readily seen. Note two [$Si(1)O_4$] overlap with [AsO₄] in this projection but they do not form links to each other.
 - 6d. Tetrahedral interlayer link in julgoldite down [100] showing [Si_2O_7] and [SiO_4] units.
 - 6f. Tetrahedral interlayer link in lawsonite down [010] showing the $[Si_2O_7]$ unit.

